ترغب بنشر مسار تعليمي؟ اضغط هنا

117 - Shinya Kato , Takao Aoki 2015
We demonstrate an all-fiber cavity QED system with a trapped single atom in the strong coupling regime. We use a nanofiber Fabry-Perot cavity, that is, an optical nanofiber sandwiched by two fiber-Bragg-grating mirrors. Measurements of the cavity tra nsmission spectrum with a single atom in a state-insensitive nanofiber trap clearly reveal the vacuum Rabi splitting.
352 - Ryutaro Nagai , Takao Aoki 2014
We design and fabricate ultra-low-loss tapered optical fibers (TOFs) with minimal lengths. We first optimize variations of the torch scan length using the flame-brush method for fabricating TOFs with taper angles that satisfy the adiabaticity criteri a. We accordingly fabricate TOFs with optimal shapes and compare their transmission to TOFs with a constant taper angle and TOFs with an exponential shape. The highest transmission measured for TOFs with an optimal shape is in excess of 99.7 % with a total TOF length of only 23 mm, whereas TOFs with a constant taper angle of 2 mrad reach 99.6 % transmission for a 63 mm TOF length.
83 - Shinya Kato , Sho Chonan , 2013
We show that the output mode of a single-mode optical fiber can be directly focused to a sub-wavelength waist with a finite working distance by tapering the fiber to a diameter of the order of the wavelength and terminating it with a spherically/hemi spherically shaped tip. Numerical simulations show that a beam waist with a width of as small as 0.62lambda can be formed. We fabricate micro-lensed fibers and construct a probe-scanning confocal reflection microscope. Measurements on gold nano-particles show a spatial profile with a width of 0.29lambda for lambda = 850 nm, which is in good agreement with the numerical simulations. Due to their monolithic structures, these micro-lensed fibers will be flexible substitutes for conventional compound lenses in various experimental conditions such as cryogenic temperature and ultra-high vacuum.
Single photons from a coherent input are efficiently redirected to a separate output by way of a fiber-coupled microtoroidal cavity interacting with individual Cesium atoms. By operating in an overcoupled regime for the input-output to a tapered fibe r, our system functions as a quantum router with high efficiency for photon sorting. Single photons are reflected and excess photons transmitted, as confirmed by observations of photon antibunching (bunching) for the reflected (transmitted) light. Our photon router is robust against large variations of atomic position and input power, with the observed photon antibunching persisting for intracavity photon number 0.03 lesssim n lesssim 0.7.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا