ترغب بنشر مسار تعليمي؟ اضغط هنا

Micro-lensed single-mode optical fiber with high numerical aperture

84   0   0.0 ( 0 )
 نشر من قبل Takao Aoki
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the output mode of a single-mode optical fiber can be directly focused to a sub-wavelength waist with a finite working distance by tapering the fiber to a diameter of the order of the wavelength and terminating it with a spherically/hemispherically shaped tip. Numerical simulations show that a beam waist with a width of as small as 0.62lambda can be formed. We fabricate micro-lensed fibers and construct a probe-scanning confocal reflection microscope. Measurements on gold nano-particles show a spatial profile with a width of 0.29lambda for lambda = 850 nm, which is in good agreement with the numerical simulations. Due to their monolithic structures, these micro-lensed fibers will be flexible substitutes for conventional compound lenses in various experimental conditions such as cryogenic temperature and ultra-high vacuum.

قيم البحث

اقرأ أيضاً

Integrated single-mode microlasers with ultra-narrow linewidths play a game-changing role in a broad spectrum of applications ranging from coherent communication and LIDAR to metrology and sensing. Generation of such light sources in a controllable a nd cost-effective manner remains an outstanding challenge due to the difficulties in the realization of ultra-high Q active micro-resonators with suppressed mode numbers. Here, we report a microlaser generated in an ultra-high Q Erbium doped lithium niobate (LN) micro-disk. Through the formation of coherently combined polygon modes at both pump and laser wavelengths, the microlaser exhibits single mode operation with an ultra-narrow-linewidth of 98 Hz. In combination with the superior electro-optic and nonlinear optical properties of LN crystal, the mass-producible on-chip single-mode microlaser will provide an essential building block for the photonic integrated circuits demanding high precision frequency control and reconfigurability.
A nanoparticle detection scheme with single particle resolution is presented. The sensor contains only a taper fiber thus offering the advantages of compactness and installation flexibility. Sensing method is based on monitoring the transmitted light power which shows abrupt jumps with each particle binding to the taper surface. The experimental validation of the sensor is demonstrated with polystyrene nanoparticles of radii 120 nm and 175 nm in the 1550 nm wavelength band.
In this letter, we investigate a Yb-doped mode-locked fiber oscillator that uses coherent pulse division and recombination to avoid excessive nonlinear phase shifts. The mode-locking mechanism of the laser is based on the accumulation of a differenti al nonlinear phase between orthogonal polarization modes in the polarization-maintaining fiber segment. The inserted coherent pulse divider, based on YVO4-crystals rotated successively by 45{deg}, enables stable and undistorted mode-locked steady-states. The output pulse energy is increased from 89 pJ in the non-divided operation by ~6.5 dB to more than 400 pJ with three divisions. Measurements of the amplitude-fluctuations reveal a simultaneous broadband reduction of up to ~9 dB in the frequency range from 10 kHz to 2MHz.
Fixing a diamond containing a high density of Nitrogen-Vacancy (NV) center ensembles on the apex of a multimode optical fiber (MMF) extends the applications of NV-based endoscope sensors. Replacing the normal MMF with a tapered MMF (MMF-taper) has en hanced the fluorescence (FL) collection efficiency from the diamond and achieved a high spatial resolution NV-based endoscope. The MMF-tapers high FL collection efficiency is the direct result of multiple internal reflections in the tapered region caused by silica, which has a higher refractive index (RI) than the surrounding air. However, for applications involving fluidic environments whose RI is close to or higher than that of the silica, the MMF-taper loses its FL collection significantly. Here, to overcome this challenge, we replaced the MMF-taper with an ultra-high numerical aperture (NA) microstructured optical fiber (MOF) which is tapered and sealed its air capillaries at the tapered end. Since the end-sealed air capillaries along the tapered MOF (MOF-taper) have isolated the MOF core from the surrounding medium, the core retains its high FL collection and NV excitation efficiency in liquids regardless of their RI values. Such a versatile NV-based endoscope could potentially find broad applications in fluidic environments where many biological processes and chemical reactions occur.
We present a hundred-watt-level linearly-polarized random fiber laser (RFL) pumped by incoherent broadband amplified spontaneous emission (ASE) source and prospect the power scaling potential theoretically. The RFL employs half-opened cavity structur e which is composed by a section of 330 m polarization maintained (PM) passive fiber and two PM high reflectivity fiber Bragg gratings. The 2nd order Stokes light centered at 1178 nm reaches the pump limited maximal power of 100.7 W with a full width at half-maximum linewidth of 2.58 nm and polarization extinction ratio of 23.5 dB. The corresponding ultimate quantum efficiency of pump to 2nd order Stokes light is 89.01%. To the best of our knowledge, this is the first demonstration of linearly-polarized high-order RFL with hundred-watt output power. Furthermore, the theoretical investigation indicates that 300 W-level linearly-polarized single-mode 1st order Stokes light can be obtained from incoherently pumped RFL with 100 m PM passive fiber.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا