ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the progress in flavor identification tools developed for a future $e^+e^-$ linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaborat ion, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.
91 - T. Suehara , H. Hirai , H. Sumida 2015
Hybrid ECAL is a cost-conscious option of electromagnetic calorimeter (ECAL) for particle flow calorimetry to be used in a detector of International Linear Collider (ILC). It is a combination of silicon-tungsten ECAL, which realizes high granularity and robust measurement of electromagnetic shower, and scintillator-tungsten ECAL, which gives affordable cost with similar performance to silicon. Optimization and a data acquisition trial in a test bench for the hybrid ECAL are described in this article.
In collider physics at the TeV scale, there are many important processes which involve six or more jets. The sensitivity of the physics analysis depends critically on the performance of the jet clustering algorithm. We present a full detector simulat ion study for the ILC of our new algorithm which makes use of secondary vertices which improves the reconstruction of b jets. This algorithm will have many useful applications, such as in measurements involving a light Higgs which decays predominantly into two b quarks. We focus on the measurement of the Higgs self-coupling, which has so far proven to be challenging but is one of the most important measurements at the ILC.
The large hadron collider (LHC) is anticipated to provide signals of new physics at the TeV scale, which are likely to involve production of a WIMP dark matter candidate. The international linear collider (ILC) is to sort out these signals and lead u s to some viable model of the new physics at the TeV scale. In this article, we discuss how the ILC can discriminate new physics models, taking the following three examples: the inert Higgs model, the supersymmetric model, and the littlest Higgs model with T-parity. These models predict dark matter particles with different spins, 0, 1/2, and 1, respectively, and hence comprise representative scenarios. Specifically, we focus on the pair production process, e+e- -> chi+chi- -> chi0chi0W+W-, where chi0 and chi+- are the WIMP dark matter and a new charged particle predicted in each of these models. We then evaluate how accurately the properties of these new particles can be determined at the ILC and demonstrate that the ILC is capable of identifying the spin of the new charged particle and discriminating these models.
Hyperfine splitting of positronium is an important parameter for particle physics. This paper gives experimental techniques and results of R&D studies of our experiment to observe direct hyperfine transition of ortho-positronium to para-positronium.
49 - T. Suehara , M. Asano , K. Fujii 2010
Identification of beyond-standard-models including WIMP dark matter is studied in four particle final state with a W boson pair and a WIMP pair at the International Linear Collider. Models with different spin structures give distinguishable productio n angle distributions. After the mass determination in each model, the production angle is reconstructed using the four momentum of W bosons with a back-to-back constraint. Three models of Inert Higgs, Supersymmetry and Little Higgs are considered. Discrimination power at 200 fb and 40 fb signal cross section with 500 fb-1 luminosity at sqrt(s) = 500 GeV is obtained.
We developed an electron beam size monitor for extremely small beam sizes. It uses a laser interference fringe for a scattering target with the electron beam. Our target performance is < 2 nm systematic error for 37 nm beam size and < 10% statistical error in a measurement using 90 electron bunches for 25 - 6000 nm beam size. A precise laser interference fringe control system using an active feedback function is incorporated to the monitor to achieve the target performance. We describe an overall design, implementations, and performance estimations of the monitor.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا