ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid ECAL: Optimization and Related Developments

170   0   0.0 ( 0 )
 نشر من قبل Taikan Suehara
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hybrid ECAL is a cost-conscious option of electromagnetic calorimeter (ECAL) for particle flow calorimetry to be used in a detector of International Linear Collider (ILC). It is a combination of silicon-tungsten ECAL, which realizes high granularity and robust measurement of electromagnetic shower, and scintillator-tungsten ECAL, which gives affordable cost with similar performance to silicon. Optimization and a data acquisition trial in a test bench for the hybrid ECAL are described in this article.



قيم البحث

اقرأ أيضاً

International Large Detector (ILD) adopts Particle Flow Algorithm (PFA) for precise measurement of multiple jets. The electromagnetic calorimeter (ECAL) of ILD has two candidates sensor technologies for PFA, which are pixelized silicon sensors and sc intillator-strips with silicon photomultipliers. Pixelized silicon sensors have higher granularity for PFA, however they have an issue of cost reduction. In contrast, scintillator-strips have an advantage of relatively low cost and a disadvantage of degradation of position resolution by ghost hits, which are generated by orthogonal arrangement. Hybrid ECAL using both candidates is proposed to supplement these disadvantages. In this paper, we report an optimization study of the hybrid ECAL using detector simulation.
We are developing position sensitive silicon detectors (PSD) which have an electrode at each of four corners so that the incident position of a charged particle can be obtained using signals from the electrodes. It is expected that the position resol ution the electromagnetic calorimeter (ECAL) of the ILD detector will be improved by introducing PSD into the detection layers. In this study, we irradiated collimated laser beams to the surface of the PSD, varying the incident position. We found that the incident position can be well reconstructed from the signals if high resistance is implemented in the p+ layer. We also tried to observe the signal of particles by placing a radiative source on the PSD sensor.
Calorimeters with silicon detectors have many unique features and are proposed for several world-leading experiments. We discuss the tests of the first three 18x18 cm$^2$ layers segmented into 1024 pixels of the technological prototype of the silicon -tungsten electromagnetic calorimeter for a future $e^+e^-$ collider. The tests have beem performed in November 2015 at CERN SPS beam line.
176 - Maxim Titov 2010
Since long time, the compelling scientific goals of future high energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the devel opment of a fully parallel readout for a large array of sensing elements - the Multiwire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volume with low mass budget, have been playing an important role in many fields of physics. Advances in photo-lithography and micro-processing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high energy physics, MPGD applications has expanded to nuclear physics, UV and visible photon detection, astroparticle and neutrino physics, neutron detection and medical physics.
102 - Manqi Ruan 2010
GRPC Semi-Digital HCAL is a solid option for the PFA oriented calorimetry of the International Linear Collider. Together with the hardware, the software developments is progressing steadily. The stauts and plans for the GRPC SDHCAL software developme nt are presented, as well the first order digitization module for the GRPC and the display program DRUID (Display Root module Used for ILD) have been introduced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا