ترغب بنشر مسار تعليمي؟ اضغط هنا

The recently approved NASA K2 mission has the potential to multiply by an order of magnitude the number of short-period transiting planets found by Kepler around bright and low-mass stars, and to revolutionise our understanding of stellar variability in open clusters. However, the data processing is made more challenging by the reduced pointing accuracy of the satellite, which has only two functioning reaction wheels. We present a new method to extract precise light curves from K2 data, combining list-driven, soft-edged aperture photometry with a star-by-star correction of systematic effects associated with the drift in the roll-angle of the satellite about its boresight. The systematics are modelled simultaneously with the stars intrinsic variability using a semi-parametric Gaussian process model. We test this method on a week of data collected during an engineering test in January 2014, perform checks to verify that our method does not alter intrinsic variability signals, and compute the precision as a function of magnitude on long-cadence (30-min) and planetary transit (2.5-hour) timescales. In both cases, we reach photometric precisions close to the precision reached during the nominal Kepler mission for stars fainter than 12th magnitude, and between 40 and 80 parts per million for brighter stars. These results confirm the bright prospects for planet detection and characterisation, asteroseismology and stellar variability studies with K2. Finally, we perform a basic transit search on the light curves, detecting 2 bona fide transit-like events, 7 detached eclipsing binaries and 13 classical variables.
374 - S. Aigrain , S. Alencar , R. Angus 2013
We outline a proposal to use the Kepler spacecraft in two-wheel mode to monitor a handful of young associations and open clusters, for a few weeks each. Judging from the experience of similar projects using ground-based telescopes and the CoRoT space craft, this program would transform our understanding of early stellar evolution through the study of pulsations, rotation, activity, the detection and characterisation of eclipsing binaries, and the possible detection of transiting exoplanets. Importantly, Keplers wide field-of-view would enable key spatially extended, nearby regions to be monitored in their entirety for the first time, and the proposed observations would exploit unique synergies with the GAIA ESO spectroscopic survey and, in the longer term, the GAIA mission itself. We also outline possible strategies for optimising the photometric performance of Kepler in two-wheel mode by modelling pixel sensitivity variations and other systematics.
Space-based transit search missions such as Kepler are collecting large numbers of stellar light curves of unprecedented photometric precision and time coverage. However, before this scientific goldmine can be exploited fully, the data must be cleane d of instrumental artefacts. We present a new method to correct common-mode systematics in large ensembles of very high precision light curves. It is based on a Bayesian linear basis model and uses shrinkage priors for robustness, variational inference for speed, and a de-noising step based on empirical mode decomposition to prevent the introduction of spurious noise into the corrected light curves. After demonstrating the performance of our method on a synthetic dataset, we apply it to the first month of Kepler data. We compare the results, which are publicly available, to the output of the Kepler pipelines pre-search data conditioning, and show that the two generally give similar results, but the light curves corrected using our approach have lower scatter, on average, on both long and short timescales. We finish by discussing some limitations of our method and outlining some avenues for further development. The trend-corrected data produced by our approach are publicly available.
107 - S. Aigrain , F. Pont , S. Zucker 2011
We present a new, simple method to predict activity-induced radial velocity variations using high-precision time-series photometry. It is based on insights from a simple spot model, has only two free parameters (one of which can be estimated from the light curve) and does not require knowledge of the stellar rotation period. We test the method on simulated data and illustrate its performance by applying it to MOST/SOPHIE observations of the planet host-star HD189733, where it gives almost identical results to much more sophisticated, but highly degenerate models, and synthetic data for the Sun, where we demonstrate that it can reproduce variations well below the m/s level. We also apply it to Quarter 1 data for Kepler transit candidate host stars, where it can be used to estimate RV variations down to the 2-3m/s level, and show that RV amplitudes above that level may be expected for approximately two thirds of the candidates we examined.
99 - S. Aigrain , F. Pont , F. Fressin 2009
In this short paper, we study the photometric precision of stellar light curves obtained by the CoRoT satellite in its planet finding channel, with a particular emphasis on the timescales characteristic of planetary transits. Together with other arti cles in the same issue of this journal, it forms an attempt to provide the building blocks for a statistical interpretation of the CoRoT planet and eclipsing binary catch to date. After pre-processing the light curves so as to minimise long-term variations and outliers, we measure the scatter of the light curves in the first three CoRoT runs lasting more than 1 month, using an iterative non-linear filter to isolate signal on the timescales of interest. The bevhaiour of the noise on 2h timescales is well-described a power-law with index 0.25 in R-magnitude, ranging from 0.1mmag at R=11.5 to 1mmag at R=16, which is close to the pre-launch specification, though still a factor 2-3 above the photon noise due to residual jitter noise and hot pixel events. There is evidence for a slight degradation of the performance over time. We find clear evidence for enhanced variability on hours timescales (at the level of 0.5 mmag) in stars identified as likely giants from their R-magnitude and B-V colour, which represent approximately 60 and 20% of the observed population in the direction of Aquila and Monoceros respectively. On the other hand, median correlated noise levels over 2h for dwarf stars are extremely low, reaching 0.05mmag at the bright end.
CoRoT, the first space-based transit search, provides ultra-high precision light curves with continuous time-sampling over periods, of up to 5 months. This allows the detection of transiting planets with relatively long periods, and the simultaneous study of the host stars photometric variability. In this letter, we report on the discovery of the transiting giant planet CoRoT-Exo-4b and use the CoRoT light curve to perform a detailed analysis of the transit and to determine the stellar rotation period. The CoRoT light curve was pre-processed to remove outliers and correct for orbital residuals and artefacts due to hot pixels on the detector. After removing stellar variability around each transit, the transit light curve was analysed to determine the transit parameters. A discrete auto-correlation function method was used to derive the rotation period of the star from the out-of-transit light curve. We derive periods for the planets orbit and stars rotation of 9.20205 +/- 0.00037 and 8.87 +/- 1.12 days respectively, consistent with a synchronised system. We also derive the inclination, i = 90.00 -0.085 +0.000 in degrees, the ratio of the orbital distance to the stellar radius, a/R_s = 17.36 -0.25 +0.05, and the planet to star radius ratio R_p/R_s = 0.1047 -0.0022 +0.0041. We discuss briefly the coincidence between the orbital period of the planet and the stellar rotation period and its possible implications for the systems migration and star-planet interaction history.
81 - Suzanne Aigrain 2007
The Monitor project is a large-scale program of photometric and spectroscopic monitoring of young open clusters using telescopes at ESO and other observatories. Its primary goal is to detect and characterise new low-mass eclipsing binaries, and the f irst three detected systems are discussed here. We derive the masses and radii of the components of each system directly from the light and radial velocity curves, and compare them to the predictions of commonly used theoretical evolutionary models of low-mass stars.
49 - Suzanne Aigrain 2007
We present an extension of the formalism recently proposed by Pepper & Gaudi to evaluate the yield of transit surveys in homogeneous stellar systems, incorporating the impact of correlated noise on transit time-scales on the detectability of transits , and simultaneously incorporating the magnitude limits imposed by the need for radial velocity follow-up of transit candidates. New expressions are derived for the different contributions to the noise budget on transit time-scales and the least-squares detection statistic for box-shaped transits, and their behaviour as a function of stellar mass is re-examined. Correlated noise that is constant with apparent stellar magnitude implies a steep decrease in detection probability at the high mass end which, when considered jointly with the radial velocity requirements, can severely limit the potential of otherwise promising surveys in star clusters. However, we find that small-aperture, wide field surveys may detect hot Neptunes whose radial velocity signal can be measured with present-day instrumentation in very nearby (<100 pc) clusters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا