ترغب بنشر مسار تعليمي؟ اضغط هنا

77 - S. Engels , B. Terres , A. Epping 2014
We present transport measurements on high-mobility bilayer graphene fully encapsulated in hexagonal boron nitride. We show two terminal quantum Hall effect measurements which exhibit full symmetry broken Landau levels at low magnetic fields. From wea k localization measurements, we extract gate-tunable phase coherence times $tau_{phi}$ as well as the inter- and intra-valley scattering times $tau_i$ and $tau_*$. While $tau_{phi}$ is in qualitative agreement with an electron-electron interaction mediated dephasing mechanism, electron spin-flip scattering processes are limiting $tau_{phi}$ at low temperatures. The analysis of $tau_i$ and $tau_*$ points to local strain fluctuation as the most probable mechanism for limiting the mobility in high-quality bilayer graphene.
171 - S. Engels , A. Epping , C. Volk 2013
We report on the fabrication and characterization of etched graphene quantum dots (QDs) on hexagonal boron nitride (hBN) and SiO2 with different island diameters. We perform a statistical analysis of Coulomb peak spacings over a wide energy range. Fo r graphene QDs on hBN, the standard deviation of the normalized peak spacing distribution decreases with increasing QD diameter, whereas for QDs on SiO2 no diameter dependency is observed. In addition, QDs on hBN are more stable under the influence of perpendicular magnetic fields up to 9T. Both results indicate a substantially reduced substrate induced disorder potential in graphene QDs on hBN.
Kohn anomalies in three-dimensional metallic crystals are dips in the phonon dispersion that are caused by abrupt changes in the screening of the ion-cores by the surrounding electron-gas. These anomalies are also present at the high-symmetry points Gamma and K in the phonon dispersion of two-dimensional graphene, where the phonon wave-vector connects two points on the Fermi surface. The linear slope around the kinks in the highest optical branch is proportional to the electron-phonon coupling. Here, we present a combined theoretical and experimental study of the influence of the dielectric substrate on the vibrational properties of graphene. We show that screening by the dielectric substrate reduces the electron-phonon coupling at the high-symmetry point K and leads to an up-shift of the Raman 2D-line. This results in the observation of a Kohn anomaly that can be tuned by screening. The exact position of the 2D-line can thus be taken also as a signature for changes in the (electron-phonon limited) conductivity of graphene.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا