ترغب بنشر مسار تعليمي؟ اضغط هنا

(Abridged) The origin of dSphs in the Local Group (LG) remains an enigma. The tidal stirring model posits that late-type, rotationally-supported dwarfs resembling present-day dwarf irregular (dIrr) galaxies can transform into dSphs via interactions w ith Milky Way-sized hosts. Using collisionless N-body simulations, we investigate for the first time how tidal stirring depends on the dark matter (DM) density distribution in the central stellar region of the progenitor disky dwarf. Specifically, we explore various asymptotic inner slopes gamma of the dwarf DM density profiles (rho propto r^{-gamma} as r -> 0). For a given orbit inside the primary, rotationally-supported dwarfs embedded in DM halos with core-like density distributions (gamma = 0.2) and mild density cusps (gamma = 0.6) demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs compared to their counterparts with steeper DM density profiles (gamma = 1). Such shallow DM distributions are akin to those of observed dIrrs, highlighting tidal stirring as a plausible model for the LG morphology-density relation. When gamma <1, a single pericentric passage can induce dSph formation and disky dwarfs on low-eccentricity or large-pericenter orbits are able to transform into dSphs; these new results allow the tidal stirring model to explain the existence of virtually all known dSphs across a wide range of distances from their hosts. A subset of rotationally-supported dwarfs with gamma <1 are eventually disrupted by the primary; those that survive as dSphs are generally on orbits that are biased towards lower eccentricities and/or larger pericenters relative to those of typical CDM satellites. The latter could explain the rather peculiar orbits of several classic LG dSphs such as Fornax, Leo I, Tucana, and Cetus.
We perform collisionless N-body simulations to investigate whether binary mergers between rotationally-supported dwarfs can lead to the formation of dwarf spheroidal galaxies (dSphs). Our simulation campaign is based on a hybrid approach combining co smological simulations and controlled numerical experiments. We select merger events from a Constrained Local UniversE (CLUES) simulation of the Local Group (LG) and record the properties of the interacting dwarf-sized halos. This information is subsequently used to seed controlled experiments of binary encounters between dwarf galaxies consisting of exponential stellar disks embedded in cosmologically-motivated dark matter halos. These simulations are designed to reproduce eight cosmological merger events, with initial masses of the interacting systems in the range ~ (5-60) x 10^7 Mo, occurring quite early in the history of the LG, more than 10 Gyr ago. We compute the properties of the merger remnants as a distant observer would and demonstrate that at least three of the simulated encounters produce systems with kinematic and structural properties akin to those of the classic dSphs in the LG. Tracing the history of the remnants in the cosmological simulation to z=0, we find that two dSph-like objects remain isolated at distances larger than 800 kpc from either the Milky Way or M31. These systems constitute plausible counterparts of the remote dSphs Cetus and Tucana which reside in the LG outskirts, far from the tidal influence of the primary galaxies. We conclude that merging of rotationally-supported dwarfs represents a viable mechanism for the formation of dSphs in the LG and similar environments.
(Abridged) The tidal stirring model posits the formation of dSph galaxies via the tidal interactions between rotationally-supported dwarfs and MW-sized host galaxies. Using a set of collisionless N-body simulations, we investigate the efficiency of t he tidal stirring mechanism. We explore a wide variety of dwarf orbital configurations and initial structures and demonstrate that in most cases the disky dwarfs experience significant mass loss and their stellar components undergo a dramatic morphological and dynamical transformation: from disks to bars and finally to pressure-supported spheroidal systems with kinematic and structural properties akin to those of the classic dSphs in the Local Group (LG). Our results suggest that such tidal transformations should be common occurrences within the currently favored cosmological paradigm and highlight the key factor responsible for an effective metamorphosis to be the strength of the tidal shocks at the pericenters of the orbit. We demonstrate that the combination of short orbital times and small pericenters, characteristic of dwarfs being accreted at high redshift, induces the strongest transformations. Our models also indicate that the transformation efficiency is affected significantly by the structure of the progenitor disky dwarfs. Lastly, we find that the dwarf remnants satisfy the relation Vmax = sqrt{3} * sigma, where sigma is the 1D, central stellar velocity dispersion and Vmax is the maximum halo circular velocity, with intriguing implications for the missing satellites problem. Overall, we conclude that the action of tidal forces from the hosts constitutes a crucial evolutionary mechanism for shaping the nature of dwarf galaxies in environments such as that of the LG. Environmental processes of this type should thus be included as ingredients in models of dwarf galaxy formation and evolution.
Cosmological simulations indicate that cold dark matter (CDM) halos should be triaxial. Verifying observationally this theoretical prediction is, however, less than straightforward because the assembly of galaxies is expected to modify the halo shape s and to render them more axisymmetric. We use a suite of N-body simulations to investigate quantitatively the effect of the growth of a central disk galaxy on the shape of triaxial dark matter halos. As expected, the halo responds to the presence of the disk by becoming more spherical. The net effect depends only weakly on the orientation of the disk relative to the halo principal axes or the timescale of disk assembly, but strongly on the overall gravitational importance of the disk. Our results show that exponential disks whose contribution peaks at less than ~50% of their circular velocity are unable to modify noticeably the shape of the gravitational potential of their surrounding halos. Many dwarf and low surface brightness galaxies are expected to be in this regime, and therefore their detailed kinematics could be used to probe halo triaxiality, one of the basic predictions of the CDM paradigm. We argue that the complex disk kinematics of the dwarf galaxy NGC 2976 might be the reflection of a triaxial halo. Such signatures of halo triaxiality should be common in galaxies where the luminous component is subdominant.
56 - Ileana M. Vass 2009
We use dissipationless N-body simulations to investigate the evolution of the true coarse-grained phase-space density distribution f(x,v) in equal-mass mergers between dark matter (DM) halos. The halo models are constructed with various asymptotic po wer-law indices ranging from steep cusps to core-like profiles and we employ the phase-space density estimator ``Enbid developed by Sharma & Steinmetz to compute f(x,v). The adopted force resolution allows robust phase-space density profile estimates in the inner ~1% of the virial radii of the simulated systems. We confirm that mergers result in a decrease of the coarse-grained phase-space density in accordance with expectations from Mixing Theorems for collisionless systems. We demonstrate that binary mergers between identical DM halos produce remnants that retain excellent memories of the inner slopes and overall shapes of the phase-space density distribution of their progenitors. The robustness of the phase-space density profiles holds for a range of orbital energies, and a variety of encounter configurations including sequences of several consecutive merger events, designed to mimic hierarchical merging, and collisions occurring at different cosmological epochs. If the progenitor halos are constructed with appreciably different asymptotic power-law indices, we find that the inner slope and overall shape of the phase-space density distribution of the remnant are substantially closer to that of the initial system with the steepest central density cusp. These results explicitly demonstrate that mixing is incomplete in equal-mass mergers between DM halos, as it does not erase memory of the progenitor properties. Our results also confirm the recent analytical predictions of Dehnen (2005) regarding the preservation of merging self-gravitating central density cusps.
(Abridged) We perform dissipationless N-body simulations to elucidate the dynamical response of thin disks to bombardment by cold dark matter (CDM) substructure. Our method combines (1) cosmological simulations of the formation of Milky Way (MW)-size d CDM halos to derive the properties of substructure and (2) controlled numerical experiments of consecutive subhalo impacts onto an initially-thin, fully-formed MW type disk galaxy. The present study is the first to account for the evolution of satellite populations over cosmic time in such an investigation of disk structure. We find that accretions of massive subhalos onto the central regions of host halos, where the galactic disks reside, since z~1 should be common. One host halo accretion history is used to initialize the controlled simulations of satellite-disk encounters. We show that these accretion events severely perturb the thin galactic disk and produce a wealth of distinctive dynamical signatures on its structure and kinematics. These include (1) considerable thickening and heating at all radii, with the disk thickness and velocity ellipsoid nearly doubling at the solar radius; (2) prominent flaring associated with an increase in disk thickness greater than a factor of 4 in the disk outskirts; (3) surface density excesses at large radii, beyond ~5 disk scale lengths, resembling those of observed antitruncated disks; (4) lopsidedness at levels similar to those measured in observational samples of disk galaxies; and (5) substantial tilting. The interaction with the most massive subhalo drives the disk response while subsequent bombardment is much less efficient at disturbing the disk. We conclude that substructure-disk encounters of the kind expected in the LCDM paradigm play a significant role in setting the structure of disk galaxies and driving galaxy evolution.
61 - Lucio Mayer 2008
(Abridged) We review the results of the first multi-scale, hydrodynamical simulations of mergers between galaxies with central supermassive black holes (SMBHs) to investigate the formation of SMBH binaries in galactic nuclei. We demonstrate that stro ng gas inflows produce nuclear disks at the centers of merger remnants whose properties depend sensitively on the details of gas thermodynamics. In numerical simulations with parsec-scale spatial resolution in the gas component and an effective equation of state appropriate for a starburst galaxy, we show that a SMBH binary forms very rapidly, less than a million years after the merger of the two galaxies. Binary formation is significantly suppressed in the presence of a strong heating source such as radiative feedback by the accreting SMBHs. We also present preliminary results of numerical simulations with ultra-high spatial resolution of 0.1 pc in the gas component. These simulations resolve the internal structure of the resulting nuclear disk down to parsec scales and demonstrate the formation of a central massive object (~ 10^8 Mo) by efficient angular momentum transport. This is the first time that a radial gas inflow is shown to extend to parsec scales as a result of the dynamics and hydrodynamics involved in a galaxy merger, and has important implications for the fueling of SMBHs. Due to the rapid formation of the central clump, the density of the nuclear disk decreases significantly in its outer region, reducing dramatically the effect of dynamical friction and leading to the stalling of the two SMBHs at a separation of ~1 pc. We discuss how the orbital decay of the black holes might continue in a more realistic model which incorporates star formation and the multi-phase nature of the ISM.
We perform a set of high-resolution, dissipationless N-body simulations to investigate the influence of cold dark matter (CDM) substructure on the dynamical evolution of thin galactic disks. Our method combines cosmological simulations of galaxy-size d CDM halos to derive the properties of substructure populations and controlled numerical experiments of consecutive subhalo impacts onto initially-thin, fully-formed disk galaxies. We demonstrate that close encounters between massive subhalos and galactic disks since z~1 should be common occurrences in LCDM models. In contrast, extremely few satellites in present-day CDM halos are likely to have a significant impact on the disk structure. One typical host halo merger history is used to seed controlled N-body experiments of subhalo-disk encounters. As a result of these accretion events, the disk thickens considerably at all radii with the disk scale height increasing in excess of a factor of 2 in the solar neighborhood. We show that interactions with the subhalo population produce a wealth of distinctive morphological signatures in the disk stars including: conspicuous flares; bars; low-lived, ring-like features in the outskirts; and low-density, filamentary structures above the disk plane. We compare a resulting dynamically-cold, ring-like feature in our simulations to the Monoceros ring stellar structure in the MW. The comparison shows quantitative agreement in both spatial distribution and kinematics, suggesting that such observed complex stellar components may arise naturally as disk stars are excited by encounters with subhalos. These findings highlight the significant role of CDM substructure in setting the structure of disk galaxies and driving galaxy evolution.
(Abridged) We conduct a series of high-resolution, dissipationless N-body simulations to investigate the cumulative effect of substructure mergers onto thin disk galaxies in the context of the LCDM paradigm of structure formation. Our simulation camp aign is based on a hybrid approach. Substructure properties are culled directly from cosmological simulations of galaxy-sized cold dark matter (CDM) halos. In contrast to what can be inferred from statistics of the present-day substructure populations, accretions of massive subhalos onto the central regions of host halos, where the galactic disk resides, since z~1 should be common occurrences. One host halo merger history is subsequently used to seed controlled numerical experiments of repeated satellite impacts on an initially-thin Milky Way-type disk galaxy. We show that these accretion events produce several distinctive observational signatures in the stellar disk including: a ring-like feature in the outskirts; a significant flare; a central bar; and faint filamentary structures that (spuriously) resemble tidal streams. The final distribution of disk stars exhibits a complex vertical structure that is well-described by a standard ``thin-thick disk decomposition. We conclude that satellite-disk encounters of the kind expected in LCDM models can induce morphological features in galactic disks that are similar to those being discovered in the Milky Way, M31, and in other disk galaxies. These results highlight the significant role of CDM substructure in setting the structure of disk galaxies and driving galaxy evolution. Upcoming galactic structure surveys and astrometric satellites may be able to distinguish between competing cosmological models by testing whether the detailed structure of galactic disks is as excited as predicted by the CDM paradigm.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا