ﻻ يوجد ملخص باللغة العربية
(Abridged) The origin of dSphs in the Local Group (LG) remains an enigma. The tidal stirring model posits that late-type, rotationally-supported dwarfs resembling present-day dwarf irregular (dIrr) galaxies can transform into dSphs via interactions with Milky Way-sized hosts. Using collisionless N-body simulations, we investigate for the first time how tidal stirring depends on the dark matter (DM) density distribution in the central stellar region of the progenitor disky dwarf. Specifically, we explore various asymptotic inner slopes gamma of the dwarf DM density profiles (rho propto r^{-gamma} as r -> 0). For a given orbit inside the primary, rotationally-supported dwarfs embedded in DM halos with core-like density distributions (gamma = 0.2) and mild density cusps (gamma = 0.6) demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs compared to their counterparts with steeper DM density profiles (gamma = 1). Such shallow DM distributions are akin to those of observed dIrrs, highlighting tidal stirring as a plausible model for the LG morphology-density relation. When gamma <1, a single pericentric passage can induce dSph formation and disky dwarfs on low-eccentricity or large-pericenter orbits are able to transform into dSphs; these new results allow the tidal stirring model to explain the existence of virtually all known dSphs across a wide range of distances from their hosts. A subset of rotationally-supported dwarfs with gamma <1 are eventually disrupted by the primary; those that survive as dSphs are generally on orbits that are biased towards lower eccentricities and/or larger pericenters relative to those of typical CDM satellites. The latter could explain the rather peculiar orbits of several classic LG dSphs such as Fornax, Leo I, Tucana, and Cetus.
A conclusive model for the formation of dwarf spheroidal (dSph) galaxies still remains elusive. Owing to their proximity to the massive spirals Milky Way (MW) and M31, various environmental processes have been invoked to explain their origin. In this
(Abridged) The tidal stirring model posits the formation of dSph galaxies via the tidal interactions between rotationally-supported dwarfs and MW-sized host galaxies. Using a set of collisionless N-body simulations, we investigate the efficiency of t
Self-Interacting Dark Matter is an attractive alternative to the Cold Dark Matter paradigm only if it is able to substantially reduce the central densities of dwarf-size haloes while keeping the densities and shapes of cluster-size haloes within curr
We perform collisionless N-body simulations to investigate whether binary mergers between rotationally-supported dwarfs can lead to the formation of dwarf spheroidal galaxies (dSphs). Our simulation campaign is based on a hybrid approach combining co
This paper introduces a new two-parameter family of dwarf spheroidal (dSph) galaxy models. The density distribution has a Plummer profile and falls like the inverse fourth power of distance in projection, in agreement with the star-count data. The fi