ترغب بنشر مسار تعليمي؟ اضغط هنا

114 - S. Ibuka , M. Imai , M. Miyakawa 2015
A filled skutterudite, La$_{0.5}$Rh$_4$Sb$_{12}$, with a lattice constant of 9.284(2) {AA} was synthesized using a high-pressure technique. The electrical resistivity showed semiconducting behavior and the energy gap was estimated to be more than 0.0 8 eV. Magnetic susceptibility measurements indicated temperature-independent diamagnetism, which originates from Larmor diamagnetism. The electrical properties of this compound are more similar to those of the La$_{0.5}$Rh$_4$As$_{12}$ semiconductor with an energy gap of 0.03 eV than to those of the La$_{0.6}$Rh$_4$P$_{12}$ superconductor.
127 - S. Ibuka , Y. Nambu , T. Yamazaki 2014
Antiferromagnetic spin fluctuations were investigated in the normal states of the parent ($x = 0$), under-doped ($x = 0.04$) and optimally-doped ($x = 0.06$) Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals using inelastic neutron scattering technique. For all the doping levels, quasi-two-dimensional antiferromagnetic fluctuations were observed as a broad peak localized at ${it Q} = (1/2, 1/2, l)$. At lower energies, the peak shows an apparent anisotropy in the $hk0$ plane; longitudinal peak widths are considerably smaller than transverse widths. The anisotropy is larger for the higher doping level. These results are consistent with the random phase approximation (RPA) calculations taking account of the orbital character of the electronic bands, confirming that the anisotropic nature of the spin fluctuations in the normal states is mostly dominated by the nesting of Fermi surfaces. On the other hand, the quasi-two-dimensional spin correlations grow much rapidly for decreasing temperature in the $x = 0$ parent compound, compared to that expected for nearly antiferromagnetic metals. This may be another sign of the unconventional nature of the antiferromagnetic transition in BaFe$_2$As$_2$.
The crystal structure, superconducting properties, and electronic structure of a novel superconducting 122-type antimonide, BaPt$_2$Sb$_2$, have been investigated by measurements of powder X-ray diffraction patterns, electrical resistivity, ac magnet ic susceptibility, specific heat as well as ab-initio calculations. This material crystallizes in a new-type of monoclinic variant of the CaBe$_2$Ge$_2$-type structure, in which Pt$_2$Sb$_2$ layers consisting of PtSb$_4$ tetrahedra and Sb$_2$Pt$_2$ layers consisting of SbPt$_4$ tetrahedra are stacked alternatively and Ba atoms are located between the layers. Measurements of electrical resistivity, ac magnetic susceptibility and specific heat revealed that BaPt$_2$Sb$_2$ is a superconducting material with a $T_{rm c}$ of 1.8 K. The electronic heat capacity coefficient $gamma_{rm n}$ and Debye temperature $theta_{rm D}$ were 8.6(2) mJ/mol K$^2$ and 146(4) K, where the figures in parentheses represent the standard deviation. The upper critical field $mu_{rm 0}H_{rm c2}(0)$ and the Ginzburg-Landau coherent length $xi(0)$ were determined to be 0.27 T and 35 nm. Calculations showed that it has two three-dimensional Fermi surfaces (FSs) and two two-dimensional FSs, leading to anisotropic transport properties. The d-states of the Pt atoms in the Pt2Sb2 layers mainly contribute to $N(E_{rm F})$. A comparison between experimental and calculated results indicates that BaPt$_2$Sb$_2$ is a superconducting material with moderate coupling.
Superconducting properties of the polycrystalline Zr2Ru3Si4 were investigated by the electrical resistivity, magnetization and specific heat. By these measurements, bulk superconductivity with transition temperature Tc = 5.5 K was confirmed. Moreover , Zr2Ru3Si4 was found to be a type-II and intermediate-coupling superconductor. Interestingly, the electronic specific heat shows a deviation from a one-gap s-wave model and Hc2(T) shows unusual positive curvature in the vicinity of Tc. The first principles calculation shows the existence of plural anisotropic Fermi surfaces. These results suggest that Zr2Ru3Si4 is not an isotropic single-gap superconductor, but possibly a multi-gap or an anisotropic gap superconductor.
We have performed magnetic susceptibility and neutron scattering measurements on polycrystalline Ag-In-RE (RE: rare-earth) 1/1 approximants. In the magnetic susceptibility measurements, for most of the RE elements, inverse susceptibility shows linear behaviour in a wide temperature range, confirming well localized isotropic moments for the RE$^{3+}$ ions. Exceptionally for the light RE elements, such as Ce and Pr, non-linear behaviour was observed, possibly due to significant crystalline field splitting or valence fluctuation. For RE = Tb, the susceptibility measurement clearly shows a bifurcation of the field-cooled and zero-field-cooled susceptibility at $T_{rm f} = 3.7$~K, suggesting a spin-glass-like freezing. On the other hand, neutron scattering measurements detect significant development of short-range antiferromagnetic spin correlations in elastic channel, which accompanied by a broad peak at $hbaromega = 4$~meV in inelastic scattering spectrum. These features have striking similarity to those in the Zn-Mg-Tb quasicrystals, suggesting that the short-range spin freezing behaviour is due to local high symmetry clusters commonly seen in both the systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا