ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting properties of the ternary transition-metal silicide Zr2Ru3Si4

49   0   0.0 ( 0 )
 نشر من قبل Soshi Ibuka
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconducting properties of the polycrystalline Zr2Ru3Si4 were investigated by the electrical resistivity, magnetization and specific heat. By these measurements, bulk superconductivity with transition temperature Tc = 5.5 K was confirmed. Moreover, Zr2Ru3Si4 was found to be a type-II and intermediate-coupling superconductor. Interestingly, the electronic specific heat shows a deviation from a one-gap s-wave model and Hc2(T) shows unusual positive curvature in the vicinity of Tc. The first principles calculation shows the existence of plural anisotropic Fermi surfaces. These results suggest that Zr2Ru3Si4 is not an isotropic single-gap superconductor, but possibly a multi-gap or an anisotropic gap superconductor.

قيم البحث

اقرأ أيضاً

We report the synthesis, crystal structure, superconductivity and physical property characterizations of the ternary equiatomic compound ScRuSi. Polycrystalline samples of ScRuSi were prepared by an arc-melting method. The as-prepared samples were id entified as the orthorhombic Co2P-type o-ScRuSi by the powder X-ray diffraction analysis. Electrical resistivity measurement shows o-ScRuSi to be a metal which superconducts below a Tc of 3.1 K, and the upper critical field {mu}0Hc2(0) is estimated to be 0.87 T. The magnetization and specific heat measurements confirm the bulk type-II superconductivity in o-ScRuSi, with the specific heat jump within the BCS weak coupling limit. o-ScRuSi is the first Co2P-type superconductor containing scandium. After annealing at 1273 K for a week, o-ScRuSi transforms into the hexagonal Fe2P-type h-ScRuSi, and the latter is a Pauli-paramagnetic metal with no superconductivity observed above 1.8 K.
We systematically measure the superconducting (SC) and mixed state properties of high-quality CsV3Sb5 single crystals with Tc ~ 3.5 K. We find that the upper critical field Hc2(T) exhibits a large anisotropic ratio of Hc2^(ab)/Hc2^(c) ~ 9 at zero tem perature and fitting its temperature dependence requires a minimum two-band effective model. Moreover, the ratio of the lower critical field, Hc1^(ab)/Hc1^(c), is also found to be larger than 1, which indicates that the in-plane energy dispersion is strongly renormalized near Fermi energy. Both Hc1(T) and SC diamagnetic signal are found to change little initially below Tc ~ 3.5 K and then to increase abruptly upon cooling to a characteristic temperature of ~2.8 K. Furthermore, we identify a two-fold anisotropy of in-plane angular-dependent magnetoresistance in the mixed state. Interestingly, we find that, below the same characteristic T ~ 2.8 K, the orientation of this two-fold anisotropy displays a peculiar twist by an angle of 60o characteristic of the Kagome geometry. Our results suggest an intriguing superconducting state emerging in the complex environment of Kagome lattice, which, at least, is partially driven by electron-electron correlation.
68 - X. Zhang , A. Engel , Q. Wang 2016
Superconducting properties of three series of amorphous WxSi1-x films with different thickness and stoichiometry were investigated by dc transport measurements in a magnetic field up to 9 T. These amorphous WxSi1-x films were deposited by magnetron c o-sputtering of the elemental source targets onto silicon substrates at room temperature and patterned in form of bridges by optical lithography and reactive ion etching. Analysis of the data on magnetoconductivity allowed us to extract the critical temperature, superconducting coherence length, magnetic penetration depth, and diffusion coefficient of electrons in the normal state as a function of film thickness for each stoichiometry. Two basic time constants were derived from transport and time-resolving measurements. A dynamic process of the formation of a hot-spot was analyzed in the framework of a diffusion-based vortex-entry model. We used the two stage diffusion approach and defined a hotspot size by assuming that the quasi-particles and normal-state electrons have the equal diffusion constant. Our findings are consistent with the most recent results on a hot-spot relaxation time in the WxSi1-x superconducting nanowire single-photon detector. In the 5 nm thick W0.85Si0.15 film the hot-spot has a diameter of 105 nm at the peak of the number of non-equilibrium quasi-particles.
Dependence of superconducting properties of (Ca,RE)(Fe,TM)As2 [(Ca,RE)112, TM: Co, Ni)] on RE elements (RE = La-Gd) was systematically investigated. Improvement of superconducting properties by Co or Ni co-doping was observed for all (Ca,RE)112, whic h is similar to Co-co-doped (Ca,La)112 or (Ca,Pr)112. Tc of Co-co-doped samples decreased from 38 K for RE = La to 29 K for RE = Gd with decreasing ionic radii of RE3+. However, Co-co-doped (Ca,Eu)112 showed exceptionally low Tc = 21 K probably due to the co-existence of Eu3+ and Eu2+ suggested by longer interlayer distance dFe-Fe of (Ca,Eu)112 than other (Ca,RE)112.
We study unconventional superconductivity in a two-dimensional locally noncentrosymmetric triangular lattice. The model is relevant to bilayer transition metal dichalcogenides with 2H$_b$ stacking structure, for example. The superconducting instabili ty is analyzed by solving the linearized Eliashberg equation within the random phase approximation. We show that ferromagnetic fluctuations are dominant owing to the existence of disconnected Fermi pockets near van Hove singularity, and hence odd-parity spin-triplet superconductivity is favored. In the absence of the spin-orbit coupling, we find that odd-parity $f$-wave superconducting state is stabilized in a wide range of carrier density and interlayer coupling. Furthermore, we investigate impacts of the layer-dependent staggered Rashba and Zeeman spin-orbit coupling on the superconductivity. Multiple odd-parity superconducting phase diagrams are obtained as a function of the spin-orbit coupling and Coulomb interaction. Especially, a topological chiral $p$-wave pairing state is stabilized in the presence of a moderate Zeeman spin-orbit coupling. Our results shed light on a possibility of odd-parity superconductivity in various ferromagnetic van der Waals materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا