ﻻ يوجد ملخص باللغة العربية
Antiferromagnetic spin fluctuations were investigated in the normal states of the parent ($x = 0$), under-doped ($x = 0.04$) and optimally-doped ($x = 0.06$) Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals using inelastic neutron scattering technique. For all the doping levels, quasi-two-dimensional antiferromagnetic fluctuations were observed as a broad peak localized at ${it Q} = (1/2, 1/2, l)$. At lower energies, the peak shows an apparent anisotropy in the $hk0$ plane; longitudinal peak widths are considerably smaller than transverse widths. The anisotropy is larger for the higher doping level. These results are consistent with the random phase approximation (RPA) calculations taking account of the orbital character of the electronic bands, confirming that the anisotropic nature of the spin fluctuations in the normal states is mostly dominated by the nesting of Fermi surfaces. On the other hand, the quasi-two-dimensional spin correlations grow much rapidly for decreasing temperature in the $x = 0$ parent compound, compared to that expected for nearly antiferromagnetic metals. This may be another sign of the unconventional nature of the antiferromagnetic transition in BaFe$_2$As$_2$.
Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe2As2, a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state,
57Fe Mossbauer spectroscopy measurements are presented in the underdoped Ba(Fe{1-x}Cox)2As2 series for x=0.014 (T_c < 1.4K) and x=0.03 and 0.045 (T_c ~ 2 and 12K respectively). The spectral shapes in the so-called spin-density wave (SDW) phase are in
We report on infrared studies of charge dynamics in a prototypical pnictide system: the BaFe2As2 family. Our experiments have identified hallmarks of the pseudogap state in the BaFe2As2 system that mirror the spectroscopic manifestations of the pseud
We report here first extensive measurements of the temperature dependence of phonon density of states of BaFe2As2, the parent compound of the newly discovered FeAs-based superconductors, using inelastic neutron scattering. The experiments were carrie
Superconducting and normal state transport properties in iron pnictides are sensitive to disorder and impurity scattering. By investigation of Ba(Fe1-xCox)2As2 thin films with varying Co concentration, we demonstrate that in the dirty limit the super