ترغب بنشر مسار تعليمي؟ اضغط هنا

We phase-coherently measure the frequency of continuous-wave (CW) laser light by use of optical-phase modulation and f-2f nonlinear interferometry. Periodic electro-optic modulation (EOM) transforms the CW laser into a continuous train of picosecond optical pulses. Subsequent nonlinear-fiber broadening of this EOM frequency comb produces a supercontinuum with 160 THz of bandwidth. A critical intermediate step is optical filtering of the EOM comb to reduce electronic-noise-induced decoherence of the supercontinuum. Applying f-2f self-referencing with the supercontinuum yields the carrier-envelope offset frequency of the EOM comb, which is precisely the difference of the CW laser frequency and an exact integer multiple of the EOM pulse repetition rate. Here we demonstrate absolute optical frequency metrology and synthesis applications of the self-referenced CW laser with <5E-14 fractional accuracy and stability.
Optical-frequency combs enable measurement precision at the 20th digit, and accuracy entirely commensurate with their reference oscillator. A new direction in experiments is the creation of ultracompact frequency combs by way of nonlinear parametric optics in microresonators. We refer to these as microcombs, and here we report a silicon-chip-based microcomb optical clock that phase-coherently converts an optical-frequency reference to a microwave signal. A low-noise comb spectrum with 25 THz span is generated with a 2 mm diameter silica disk and broadening in nonlinear fiber. This spectrum is stabilized to rubidium frequency references separated by 3.5 THz by controlling two teeth 108 modes apart. The optical clocks output is the electronically countable 33 GHz microcomb line spacing, which features an absolute stability better than the rubidium transitions by the expected factor of 108. Our work demonstrates the comprehensive set of tools needed for interfacing microcombs to state-of-the-art optical clocks.
250 - Scott B. Papp , Pascal DelHaye , 2013
We have investigated parametric seeding of a microresonator frequency comb (microcomb) by way of a pump laser with two electro-optic-modulation sidebands. We show that the pump-sideband spacing is precisely replicated throughout the microcombs optica l spectrum, and we demonstrate a record absolute line-spacing stability for microcombs of $1.6times10^{-13}$ at 1 s. The spectrum of a parametric comb is complex, and often non-equidistant subcombs are observed. Our results demonstrate that parametric seeding can not only control the subcombs, but can lead to the generation of a strictly equidistant microcomb spectrum.
Robust control and stabilization of optical frequency combs enables an extraordinary range of scientific and technological applications, including frequency metrology at extreme levels of precision, novel spectroscopy of quantum gases and of molecule s from visible wavelengths to the far infrared, searches for exoplanets, and photonic waveform synthesis. Here we report on the stabilization of a microresonator-based optical comb (microcomb) by way of mechanical actuation. This represents an important step in the development of microcomb technology, which offers a pathway toward fully-integrated comb systems. Residual fluctuations of our 32.6 GHz microcomb line spacing reach a record stability level of $5times10^{-15}$ for 1 s averaging, thereby highlighting the potential of microcombs to support modern optical frequency standards. Furthermore, measurements of the line spacing with respect to an independent frequency reference reveal the effective stabilization of different spectral slices of the comb with a $<$0.5 mHz variation among 140 comb lines spanning 4.5 THz. These experiments were performed with newly-developed microrod resonators, which were fabricated using a CO$_2$-laser-machining technique.
We report on the fabrication of high-Q, fused-quartz microresonators and the parametric generation of a frequency comb with 36 GHz line spacing using them. We have characterized the intrinsic stability of the comb in both the time and frequency domai ns to assess its suitability for future precision metrology applications. Intensity autocorrelation measurements and line-by-line comb control reveal near-transform-limited picosecond pulse trains that are associated with good relative phase and amplitude stability of the comb lines. The combs 36 GHz line spacing can be readily photodetected, which enables measurements of its intrinsic and absolute phase fluctuations.
325 - S. B. Papp , J. M. Pino , 2008
We report on the observation of controllable spatial separation in a dual-species Bose-Einstein condensate (BEC) with $^{85}$Rb and $^{87}$Rb. Interparticle interactions between the different components can change the miscibility of the two quantum f luids. In our experiments, we clearly observe the immiscible nature of the two simultaneously Bose-condensed species via their spatial separation. Furthermore the $^{85}$Rb Feshbach resonance near 155 G is used to change them between miscible and immiscible by tuning the $^{85}$Rb scattering length. Our apparatus is also able to create $^{85}$Rb condensates with up to $8times10^4$ atoms which represents a significant improvement over previous work.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا