ترغب بنشر مسار تعليمي؟ اضغط هنا

Studying a dual-species BEC with tunable interactions

458   0   0.0 ( 0 )
 نشر من قبل Scott Papp
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the observation of controllable spatial separation in a dual-species Bose-Einstein condensate (BEC) with $^{85}$Rb and $^{87}$Rb. Interparticle interactions between the different components can change the miscibility of the two quantum fluids. In our experiments, we clearly observe the immiscible nature of the two simultaneously Bose-condensed species via their spatial separation. Furthermore the $^{85}$Rb Feshbach resonance near 155 G is used to change them between miscible and immiscible by tuning the $^{85}$Rb scattering length. Our apparatus is also able to create $^{85}$Rb condensates with up to $8times10^4$ atoms which represents a significant improvement over previous work.



قيم البحث

اقرأ أيضاً

We produce Bose-Einstein condensates of two different species, $^{87}$Rb and $^{41}$K, in an optical dipole trap in proximity of interspecies Feshbach resonances. We discover and characterize two Feshbach resonances, located around 35 and 79 G, by ob serving the three-body losses and the elastic cross-section. The narrower resonance is exploited to create a double species condensate with tunable interactions. Our system opens the way to the exploration of double species Mott insulators and, more in general, of the quantum phase diagram of the two species Bose-Hubbard model.
We report on the production of a $^{41}$K-$^{87}$Rb dual-species Bose-Einstein condensate with tunable interspecies interaction and we study the mixture in the attractive regime, i.e. for negative values of the interspecies scattering length $a_{12}$ . The binary condensate is prepared in the ground state and confined in a pure optical trap. We exploit Feshbach resonances for tuning the value of $a_{12}$. After compensating the gravitational sag between the two species with a magnetic field gradient, we drive the mixture into the attractive regime. We let the system to evolve both in free space and in an optical waveguide. In both geometries, for strong attractive interactions, we observe the formation of self-bound states, recognizable as quantum droplets. Our findings prove that robust, long-lived droplet states can be realized in attractive two-species mixtures, despite the two atomic components may experience different potentials.
119 - Giovanni Modugno 2007
We give an overview of recent experiments on an ultracold Fermi-Bose quantum gas where the interspecies interaction can be tuned via magnetic Feshbach resonances. We first describe the various steps that have led to the observation of Feshbach resona nces in the K-Rb system we investigate, and their accurate characterization. We then describe experiments in which Feshbach resonances are exploited to study interaction effects and to associate weakly bound KRb dimers.
We produce a Bose-Einstein condensate of 39-K atoms. Condensation of this species with naturally small and negative scattering length is achieved by a combination of sympathetic cooling with 87-Rb and direct evaporation, exploiting the magnetic tunin g of both inter- and intra-species interactions at Feshbach resonances. We explore tunability of the self-interactions by studying the expansion and the stability of the condensate. We find that a 39-K condensate is interesting for future experiments requiring a weakly interacting Bose gas.
We present the production of dual-species Bose-Einstein condensates of $^{39}mathrm{K}$ and $^{87}mathrm{Rb}$. Preparation of both species in the $left| F=1,m_F=-1 rightrangle$ state enabled us to exploit a total of three Fesh-bach resonances which a llows for simultaneous Feshbach tuning of the $^{39}mathrm{K}$ intraspecies and the $^{39}mathrm{K}$-$^{87}mathrm{Rb}$ interspecies scattering length. Thus dual-species Bose-Einstein condensates were produced by sympathetic cooling of $^{39}mathrm{K}$ with $^{87}mathrm{Rb}$. A dark spontaneous force optical trap was used for $^{87}mathrm{Rb}$, to reduce the losses in $^{39}mathrm{K}$ due to light-assisted collisions in the optical trapping phase, which can be of benefit for other dual-species experiments. The tunability of the scattering length was used to perform precision spectroscopy of the interspecies Feshbach resonance located at $117.56(2),mathrm{G}$ and to determine the width of the resonance to $1.21(5),mathrm{G}$ by rethermalization measurements. The transition region from miscible to immiscible dual-species condensates was investigated and the interspecies background scattering length was determined to $28.5,a_mathrm{0}$ using an empirical model. This paves the way for dual-species experiments with $^{39}mathrm{K}$ and $^{87}mathrm{Rb}$ BECs ranging from molecular physics to precision metrology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا