ترغب بنشر مسار تعليمي؟ اضغط هنا

82 - Sascha P. Quanz 2014
We present the first multi-wavelength, high-contrast imaging study confirming the protoplanet embedded in the disk around the Herbig Ae/Be star HD100546. The object is detected at $L$ ($sim 3.8,mu m$) and $M$ ($sim 4.8,mu m$), but not at $K_s$ ($sim 2.1,mu m$), and the emission consists of a point source component surrounded by spatially resolved emission. For the point source component we derive apparent magnitudes of $L=13.92pm0.10$ mag, $M=13.33pm0.16$ mag, and $K_s>15.43pm0.11$ mag (3$sigma$ limit), and a separation and position angle of $(0.457pm0.014)$ and $(8.4pm1.4)^circ$, and $(0.472pm0.014)$ and $(9.2pm1.4)^circ$ in $L$ and $M$, respectively. We demonstrate that the object is co-moving with HD100546 and can reject any (sub-)stellar fore-/background object. Fitting a single temperature blackbody to the observed fluxes of the point source component yields an effective temperature of $T_{eff}=932^{+193}_{-202}$ K and a radius for the emitting area of $R=6.9^{+2.7}_{-2.9}$ R$_{rm Jupiter}$. The best-fit luminosity is $L=(2.3^{+0.6}_{-0.4})cdot 10^{-4},L_{rm Sun}$. We quantitatively compare our findings with predictions from evolutionary and atmospheric models for young, gas giant planets, discuss the possible existence of a warm, circumplanetary disk, and note that the de-projected physical separation from the host star of $(53pm2)$ au poses a challenge standard planet formation theories. Considering the suspected existence of an additional planet orbiting at $sim$13--14 au, HD100546 appears to be an unprecedented laboratory to study the formation of multiple gas giant planets empirically.
122 - Sascha P. Quanz 2014
We quantify the scientific potential for exoplanet imaging with the Mid-infrared E-ELT Imager and Spectrograph (METIS) foreseen as one of the instruments of the European Extremely Large Telescope (E-ELT). We focus on two main science cases: (1) the d irect detection of known gas giant planets found by radial velocity (RV) searches; and (2) the direct detection of small (1 - 4 R_earth) planets around the nearest stars. Under the assumptions made in our modeling, in particular on the achievable inner working angle and sensitivity, our analyses reveal that within a reasonable amount of observing time METIS is able to image >20 already known, RV-detected planets in at least one filter. Many more suitable planets with dynamically determined masses are expected to be found in the coming years with the continuation of RV-surveys and the results from the GAIA astrometry mission. In addition, by extrapolating the statistics for close-in planets found by emph{Kepler}, we expect METIS might detect ~10 small planets with equilibrium temperatures between 200 - 500 K around the nearest stars. This means that (1) METIS will help constrain atmospheric models for gas giant planets by determining for a sizable sample their luminosity, temperature and orbital inclination; and (2) METIS might be the first instrument to image a nearby (super-)Earth-sized planet with an equilibrium temperature near that expected to enable liquid water on a planet surface.
197 - Sascha P. Quanz 2013
We present high-contrast observations of the circumstellar environment of the Herbig Ae/Be star HD100546. The final 3.8 micron image reveals an emission source at a projected separation of 0.48+-0.04 (corresponding to ~47+-4 AU at a position angle of 8.9+-0.9 degree. The emission appears slightly extended with a point source component with an apparent magnitude of 13.2+-0.4 mag. The position of the source coincides with a local deficit in polarization fraction in near-infrared polarimetric imaging data, which probes the surface of the well-studied circumstellar disk of HD100546. This suggests a possible physical link between the emission source and the disk. Assuming a disk inclination of ~47 degree the de-projected separation of the object is ~68 AU. Assessing the likelihood of various scenarios we favor an interpretation of the available high-contrast data with a planet in the process of forming. Follow-up observations in the coming years can easily distinguish between the different possible scenarios empirically. If confirmed, HD100546 b would be a unique laboratory to study the formation process of a new planetary system, with one giant planet currently forming in the disk and a second planet possibly orbiting in the disk gap at smaller separations.
175 - Sascha P. Quanz 2013
We present H-band VLT/NACO polarized light images of the Herbig Ae/Be star HD169142 probing its protoplanetary disk as close as ~0.1 to the star. Our images trace the face-on disk out to ~1.7 (~250 AU) and reveal distinct sub-structures for the first time: 1) the inner disk (<20 AU) appears to be depleted in scattering dust grains; 2) an unresolved disk rim is imaged at ~25 AU; 3) an annular gap extends from ~40 - 70 AU; 4) local brightness asymmetries are found on opposite sides of the annular gap. We discuss different explanations for the observed morphology among which ongoing planet formation is a tempting - but yet to be proven - one. Outside of ~85 AU the surface brightness drops off roughly r^{-3.3}, but describing the disk regions between 85-120 AU / 120-250 AU separately with power-laws r^{-2.6} / r^{-3.9} provides a better fit hinting towards another discontinuity in the disk surface. The flux ratio between the disk integrated polarized light and the central star is ~4.1 * 10^{-3}. Finally, combining our results with those from the literature, ~40% of the scattered light in the H-band appears to be polarized. Our results emphasize that HD169142 is an interesting system for future planet formation or disk evolution studies.
69 - Sascha P. Quanz 2012
The nearby M-dwarf AP Col was recently identified by Riedel et al. 2011 as a pre-main sequence star (age 12 - 50 Myr) situated only 8.4 pc from the Sun. The combination of its youth, distance, and intrinsically low luminosity make it an ideal target to search for extrasolar planets using direct imaging. We report deep adaptive optics observations of AP Col taken with VLT/NACO and Keck/NIRC2 in the L-band. Using aggressive speckle suppression and background subtraction techniques, we are able to rule out companions with mass m >= 0.5 - 1M_Jup for projected separations a>4.5 AU, and m >= 2 M_Jup for projected separations as small as 3 AU, assuming an age of 40 Myr using the COND theoretical evolutionary models. Using a different set of models the mass limits increase by a factor of ~2. The observations presented here are the deepest mass-sensitivity limits yet achieved within 20 AU on a star with direct imaging. While Doppler radial velocity surveys have shown that Jovian bodies with close-in orbits are rare around M-dwarfs, gravitational microlensing studies predict that ~17% of these stars host massive planets with orbital separations of 1-10 AU. Sensitive high-contrast imaging observations, like those presented here, will help to validate results from complementary detection techniques by determining the frequency of gas giant planets on wide orbits around M-dwarfs.
81 - Sascha P. Quanz 2012
Results from gravitational microlensing suggested the existence of a large population of free-floating planetary mass objects. The main conclusion from this work was partly based on constraints from a direct imaging survey. This survey determined upp er limits for the frequency of stars that harbor giant exoplanets at large orbital separations. Aims. We want to verify to what extent upper limits from direct imaging do indeed constrain the microlensing results. We examine the current derivation of the upper limits used in the microlensing study and re-analyze the data from the corresponding imaging survey. We focus on the mass and semi-major axis ranges that are most relevant in context of the microlensing results. We also consider new results from a recent M-dwarf imaging survey as these objects are typically the host stars for planets detected by microlensing. We find that the upper limits currently applied in context of the microlensing results are probably underestimated. This means that a larger fraction of stars than assumed may harbor gas giant planets at larger orbital separations. Also, the way the upper limit is currently used to estimate the fraction of free-floating objects is not strictly correct. If the planetary surface density of giant planets around M-dwarfs is described as df_Planet ~ a^beta da, we find that beta ~ 0.5 - 0.6 is consistent with results from different observational studies probing semi-major axes between ~0.03 - 30 AU. Having a higher upper limit on the fraction of stars that may have gas giant planets at orbital separations probed by the microlensing data implies that more of the planets detected in the microlensing study are potentially bound to stars rather than free-floating. The current observational data are consistent with a rising planetary surface density for giant exoplanets around M-dwarfs out to ~30 AU.
61 - Sascha P. Quanz 2011
Using the APP coronagraph of VLT/NACO we searched for planetary mass companions around HD115892 and HD172555 in the thermal infrared at 4 micron. Both objects harbor unusually luminous debris disks for their age and it has been suggested that small d ust grains were produced recently in transient events (e.g., a collision) in these systems. Such a collision of planetesimals or protoplanets could have been dynamically triggered by yet unseen companions. We did not detect any companions in our images but derived the following detection limits: For both objects we would have detected companions with apparent magnitudes between ~13.2-14.1 mag at angular separations between 0.4- 1.0 at the 5-sigma level. For HD115892 we were sensitive to companions with 12.1 mag even at 0.3. Using theoretical models these magnitudes are converted into mass limits. For HD115892 we would have detected objects with 10-15 M_Jup at angular separations between 0.4-1.0 (7-18 AU). At 0.3 (~5.5 AU) the detection limit was ~25 M_Jup. For HD172555 we reached detection limits between 2-3 M_Jup at separations between 0.5-1.0 (15-29 AU). At 0.4 (~11 AU) the detection limit was ~4 M_Jup. Despite the non-detections our data demonstrate the unprecedented contrast performance of NACO/APP in the thermal infrared at very small inner working angles and we show that our observations are mostly background limited at separation >0.5.
236 - Sascha P. Quanz 2011
We present polarimetric differential imaging (PDI) data of the circumstellar disk around the Herbig Ae/Be star HD100546 obtained with VLT/NACO. We resolve the disk in polarized light in the H and Ks filter between ~0.1-1.4 (i.e., ~10-140 AU). The inn ermost disk regions are directly imaged for the first time and the mean apparent disk inclination and position angle are derived. The surface brightness along the disk major axis drops off roughly with S(r) ~ r^-3 but has a maximum around 0.15 suggesting a marginal detection of the main disk inner rim at ~15 AU. We find a significant brightness asymmetry along the disk minor axis in both filters with the far side of the disk appearing brighter than the near side. This enhanced backward scattering and a low total polarization degree of the scattered disk flux of 14%(+19%/-8%) suggests that the dust grains on the disk surface are larger than typical ISM grains. Empirical scattering functions reveal the backward scattering peak at the largest scattering angles and a second maximum for the smallest scattering angles. This indicates a second dust grain population preferably forward scattering and smaller in size. It shows that, relatively, in the inner disk regions (40-50 AU) a higher fraction of larger grains is found compared to the outer disk regions (100-110 AU). Finally, our images reveal distinct substructures between 25-35 AU physical separation from the star and we discuss the possible origin for the two features in the context of ongoing planet formation.
86 - Sascha P. Quanz 2009
The number of low-mass brown dwarfs and even free floating planetary mass objects in young nearby star-forming regions and associations is continuously increasing, offering the possibility to study the low-mass end of the IMF in greater detail. In th is paper, we present six new candidates for (very) low-mass objects in the Taurus star-forming region one of which was recently discovered in parallel by Luhman et al. (2009). The underlying data we use is part of a new database from a deep near-infrared survey at the Calar Alto observatory. The survey is more than four magnitudes deeper than the 2MASS survey and covers currently ~1.5 square degree. Complementary optical photometry from SDSS were available for roughly 1.0 square degree. After selection of the candidates using different color indices, additional photometry from Spitzer/IRAC was included in the analysis. In greater detail we focus on two very faint objects for which we obtained J-band spectra. Based on comparison with reference spectra we derive a spectral type of L2+/-0.5 for one object, making it the object with the latest spectral type in Taurus known today. From models we find the effective temperature to be 2080+/-140 K and the mass 5-15 Jupiter masses. For the second source the J-band spectrum does not provide a definite proof of the young, low-mass nature of the object as the expected steep water vapor absorption at 1.33 micron is not present in the data. We discuss the probability that this object might be a background giant or carbon star. If it were a young Taurus member, however, a comparison to theoretical models suggests that it lies close to or even below the deuterium burning limit (<13 Jupiter masses) as well. A first proper motion analysis for both objects shows that they are good candidates for being Taurus members.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا