ترغب بنشر مسار تعليمي؟ اضغط هنا

VLT/NACO Polarimetric Differential Imaging of HD100546 - Disk Structure and Dust Grain Properties between 10-140 AU

237   0   0.0 ( 0 )
 نشر من قبل Sascha P. Quanz
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sascha P. Quanz




اسأل ChatGPT حول البحث

We present polarimetric differential imaging (PDI) data of the circumstellar disk around the Herbig Ae/Be star HD100546 obtained with VLT/NACO. We resolve the disk in polarized light in the H and Ks filter between ~0.1-1.4 (i.e., ~10-140 AU). The innermost disk regions are directly imaged for the first time and the mean apparent disk inclination and position angle are derived. The surface brightness along the disk major axis drops off roughly with S(r) ~ r^-3 but has a maximum around 0.15 suggesting a marginal detection of the main disk inner rim at ~15 AU. We find a significant brightness asymmetry along the disk minor axis in both filters with the far side of the disk appearing brighter than the near side. This enhanced backward scattering and a low total polarization degree of the scattered disk flux of 14%(+19%/-8%) suggests that the dust grains on the disk surface are larger than typical ISM grains. Empirical scattering functions reveal the backward scattering peak at the largest scattering angles and a second maximum for the smallest scattering angles. This indicates a second dust grain population preferably forward scattering and smaller in size. It shows that, relatively, in the inner disk regions (40-50 AU) a higher fraction of larger grains is found compared to the outer disk regions (100-110 AU). Finally, our images reveal distinct substructures between 25-35 AU physical separation from the star and we discuss the possible origin for the two features in the context of ongoing planet formation.

قيم البحث

اقرأ أيضاً

The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processe s. We study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in R- and I-band and with IRDIS in Y- and J-band. The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large aggregate dust grains in the disk surface. Part of the the non-azimuthal polarization signal in the Uphi image of the J-band observation could be the result of multiple scattering in the disk. The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions.
We present polarized light observations of the transitional disk around Sz 91 acquired with VLT/NaCo at $H$ (1.7$mu$m) and $K_s$ (2.2$mu$m) bands. We resolve the disk and detect polarized emission up to $sim$0.5 ($sim$80 au) along with a central cavi ty at both bands. We computed a radiative transfer model that accounts for the main characteristics of the polarized observations. We found that the emission is best explained by small, porous grains distributed in a disk with a $sim$45 au cavity. Previous ALMA observations have revealed a large sub-mm cavity ($sim$83 au) and extended gas emission from the innermost (<16 au) regions up to almost 400 au from the star. Dynamical clearing by multiple low-mass planets arises as the most probable mechanism for the origin of Sz 91s peculiar structure. Using new $L$ band ADI observations we can rule out companions more massive than $M_p$ $geq$ 8 $M_mathrm{Jup}$ beyond 45 au assuming hot-start models. The disk is clearly asymmetric in polarized light along the minor axis, with the north side brighter than the south side. Differences in position angle between the disk observed at sub-mm wavelengths with ALMA and our NaCo observations were found. This suggests that the disk around Sz 91 could be highly structured. Higher signal-to-noise near-IR and sub-mm observations are needed to confirm the existence of such structures and to improve the current understanding in the origin of transitional disks.
We present a possible correlation between the properties of scattered and thermal radiation from dust and the principal dust characteristics responsible for this relationship. To this end, we use the NASA/PDS archival polarimetric data on cometary du st in the Red (0.62--0.73 $mu$m) and K (2.00--2.39 $mu$m) domains to leverage the relative excess of the polarisation degree of a comet to the average trend at the given phase angle ($P_{rm excess}$) as a metric of the dusts scattered light characteristics. The flux excess of silicate emissions to the continuum around 10 $mu$m ($F_{rm Si}/F_{rm cont}$) is adopted from previous studies as a metric of the dusts MIR feature. The two metrics show a positive correlation when $P_{rm excess}$ is measured in the K domain. No significant correlation was identified in the Red domain. The gas-rich comets have systematically weaker $F_{rm Si}/F_{rm cont}$ than the dust-rich ones, yet both groups retain the same overall tendency with different slope values. The observed positive correlation between the two metrics indicates that composition is a peripheral factor in characterising the dusts polarimetric and silicate emission properties. The systematic difference in $F_{rm Si}/F_{rm cont}$ for gas-rich versus dust-rich comets would rather correspond with the difference in their dust size distribution. Hence, our results suggest that the current MIR spectral models of cometary dust should prioritise the dust size and porosity over the composition. With light scattering being sensitive to different size scales in two wavebands, we expect the K-domain polarimetry to be sensitive to the properties of dust aggregates, such as size and porosity, which might have been influenced by evolutionary processes. On the other hand, the Red-domain polarimetry reflects the characteristics of sub-$mu$m constituents in the aggregate.
[Abridged] Context. Spectral differential imaging (SDI) is part of the observing strategy of current and future high-contrast imaging instruments. It aims to reduce the stellar speckles that prevent the detection of cool planets by using in/out metha ne-band images. It attenuates the signature of off-axis companions to the star, such as angular differential imaging (ADI). However, this attenuation depends on the spectral properties of the low-mass companions we are searching for. The implications of this particularity on estimating the detection limits have been poorly explored so far. Aims. We perform an imaging survey to search for cool (Teff<1000-1300 K) giant planets at separations as close as 5-10 AU. We also aim to assess the sensitivity limits in SDI data taking the photometric bias into account. This will lead to a better view of the SDI performance. Methods. We observed a selected sample of 16 stars (age < 200 Myr, d < 25 pc) with the phase-mask coronagraph, SDI, and ADI modes of VLT/NaCo. Results. We do not detect any companions. As for the sensitivity limits, we argue that the SDI residual noise cannot be converted into mass limits because it represents a differential flux, unlike the case of single-band images. This results in degeneracies for the mass limits, which may be removed with the use of single-band constraints. We instead employ a method of directly determining the mass limits. The survey is sensitive to cool giant planets beyond 10 AU for 65% and 30 AU for 100% of the sample. Conclusions. For close-in separations, the optimal regime for SDI corresponds to SDI flux ratios >2. According to the BT-Settl model, this translates into Teff<800 K. The methods described here can be applied to the data interpretation of SPHERE. We expect better performance with the dual-band imager IRDIS, thanks to more suitable filter characteristics and better image quality.
220 - Pierre Kervella 2014
As the nearest known AGB star (d=64pc) and one of the brightest (mK-2), L2 Pup is a particularly interesting benchmark object to monitor the final stages of stellar evolution. We report new lucky imaging observations of this star with the VLT/NACO ad aptive optics system in twelve narrow band filters covering the 1.0-4.0 microns wavelength range. These diffraction limited images reveal an extended circumstellar dust lane in front of the star, that exhibits a high opacity in the J band and becomes translucent in the H and K bands. In the L band, extended thermal emission from the dust is detected. We reproduce these observations using Monte-Carlo radiative transfer modeling of a dust disk with the RADMC-3D code. We also present new interferometric observations with the VLTI/VINCI and MIDI instruments. We measure in the K band an upper limit to the limb-darkened angular diameter of theta_LD = 17.9 +/- 1.6 mas, converting to a maximum linear radius of R = 123 +/- 14 Rsun. Considering the geometry of the extended K band emission in the NACO images, this upper limit is probably close to the actual angular diameter of the star. The position of L2 Pup in the Herzsprung-Russell diagram indicates that this star has a mass around 2 Msun and is probably experiencing an early stage of the asymptotic giant branch. We do not detect any stellar companion of L2 Pup in our adaptive optics and interferometric observations, and we attribute its apparent astrometric wobble in the Hipparcos data to variable lighting effects on its circumstellar material. We however do not exclude the presence of a binary companion, as the large loop structure extending to more than 10 AU to the North-East of the disk in our L band images may be the result of interaction between the stellar wind of L2 Pup and a hidden secondary object. The geometric configuration that we propose, with a large dust disk seen almost edge-on, appears particularly favorable to test and develop our understanding of the formation of bipolar nebulae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا