ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct imaging constraints on planet populations detected by microlensing

80   0   0.0 ( 0 )
 نشر من قبل Sascha P. Quanz
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sascha P. Quanz




اسأل ChatGPT حول البحث

Results from gravitational microlensing suggested the existence of a large population of free-floating planetary mass objects. The main conclusion from this work was partly based on constraints from a direct imaging survey. This survey determined upper limits for the frequency of stars that harbor giant exoplanets at large orbital separations. Aims. We want to verify to what extent upper limits from direct imaging do indeed constrain the microlensing results. We examine the current derivation of the upper limits used in the microlensing study and re-analyze the data from the corresponding imaging survey. We focus on the mass and semi-major axis ranges that are most relevant in context of the microlensing results. We also consider new results from a recent M-dwarf imaging survey as these objects are typically the host stars for planets detected by microlensing. We find that the upper limits currently applied in context of the microlensing results are probably underestimated. This means that a larger fraction of stars than assumed may harbor gas giant planets at larger orbital separations. Also, the way the upper limit is currently used to estimate the fraction of free-floating objects is not strictly correct. If the planetary surface density of giant planets around M-dwarfs is described as df_Planet ~ a^beta da, we find that beta ~ 0.5 - 0.6 is consistent with results from different observational studies probing semi-major axes between ~0.03 - 30 AU. Having a higher upper limit on the fraction of stars that may have gas giant planets at orbital separations probed by the microlensing data implies that more of the planets detected in the microlensing study are potentially bound to stars rather than free-floating. The current observational data are consistent with a rising planetary surface density for giant exoplanets around M-dwarfs out to ~30 AU.

قيم البحث

اقرأ أيضاً

Planet yield calculations may be used to inform the target selection strategy and science operations of space observatories. Forthcoming and proposed NASA missions, such as the Wide-Field Infrared Survey Telescope (WFIRST), the Habitable Exoplanet Im aging Mission (HabEx), and the Large UV/Optical/IR Surveyor (LUVOIR), are expected to be equipped with sensitive coronagraphs and/or starshades. We are developing a suite of numerical simulations to quantify the extent to which ground-based radial velocity (RV) surveys could boost the detection efficiency of direct imaging missions. In this paper, we discuss the first step in the process of estimating planet yields: generating synthetic planetary systems consistent with observed occurrence rates from multiple detection methods. In an attempt to self-consistently populate stars with orbiting planets, it is found that naive extrapolation of occurrence rates (mass, semi-major axis) results in an unrealistically large number-density of Neptune-mass planets beyond the ice-line ($a gtrsim 5$au), causing dynamic interactions that would destabilize orbits. We impose a stability criterion for multi-planet systems based on mutual Hill radii separation. Considering the influence of compact configurations containing Jovian-mass and Neptune-mass planets results in a marked suppression in the number of terrestrial planets that can exist at large radii. This result has a pronounced impact on planet yield calculations particularly in regions accessible to high-contrast imaging and microlensing. The dynamically compact configurations and occurrence rates that we develop may be incorporated as input into joint RV and direct imaging yield calculations to place meaningful limits on the number of detectable planets with future missions.
The addition of an external starshade to the {it Nancy Grace Roman Space Telescope} will enable the direct imaging of Earth-radius planets orbiting at $sim$1 AU. Classification of any detected planets as Earth-like requires both spectroscopy to chara cterize their atmospheres and multi-epoch imaging to trace their orbits. We consider here the ability of the Starshade Rendezvous Probe to constrain the orbits of directly imaged Earth-like planets. The target list for this proposed mission consists of the 16 nearby stars best suited for direct imaging. The field of regard for a starshade mission is constrained by solar exclusion angles, resulting in four observing windows during a two-year mission. We find that for habitable-zone planetary orbits that are detected at least three times during the four viewing opportunities, their semi-major axes are measured with a median precision of 7 mas, or a median fractional precision of 3%. Habitable-zone planets can be correctly identified as such 96.7% of the time, with a false positive rate of 2.8%. If a more conservative criteria is used for habitable-zone classification (95% probability), the false positive rate drops close to zero, but with only 81% of the truly Earth-like planets correctly classified as residing in the habitable zone.
Primordial black holes (PBHs) may form in the early stages of the Universe via the collapse of large density perturbations. Depending on the formation mechanism, PBHs may exist and populate today the galactic halos and have masses in a wide range, fr om about 10^{-14}Msun up to thousands, or more, of solar masses. Gravitational microlensing is the most robust and powerful method to constrain primordial black holes (PBHs), since it does not require that the lensing objects be directly visible. We calculate the optical depth and the rate of microlensing events caused by PBHs eventually distributed in the Milky Way halo, towards some selected directions of observation. Then we discuss the capability of Euclid, a space-based telescope which might perform microlensing observations at the end of its nominal mission, to probe the PBH populations in the Galactic halo.
(abridged) The study of other worlds is key to understanding our own, and not only provides clues to the origin of our civilization, but also looks into its future. Rather than in identifying nearby systems and learning about their individual propert ies, the main value of the technique of gravitational microlensing is in obtaining the statistics of planetary populations within the Milky Way and beyond. Only the complementarity of different techniques currently employed promises to yield a complete picture of planet formation that has sufficient predictive power to let us understand how habitable worlds like ours evolve, and how abundant such systems are in the Universe. A cooperative three-step strategy of survey, follow-up, and anomaly monitoring of microlensing targets, realized by means of an automated expert system and a network of ground-based telescopes is ready right now to be used to obtain a first census of cool planets with masses reaching even below that of Earth orbiting K and M dwarfs in two distinct stellar populations, namely the Galactic bulge and disk. The hunt for extra-solar planets acts as a principal science driver for time-domain astronomy with robotic-telescope networks adopting fully-automated strategies. Several initiatives, both into facilities as well as into advanced software and strategies, are supposed to see the capabilities of gravitational microlensing programmes step-wise increasing over the next 10 years. New opportunities will show up with high-precision astrometry becoming available and studying the abundance of planets around stars in neighbouring galaxies becoming possible. Finally, we should not miss out on sharing the vision with the general public, and make its realization to profit not only the scientists but all the wider society.
We report the direct imaging detection of a low-mass companion to a young, moderately active star V450 And, that was previously identified with the radial velocity method. The companion was found in high-contrast images obtained with the Subaru Teles cope equipped with the HiCIAO camera and AO188 adaptive optics system. From the public ELODIE and SOPHIE archives we extracted available high-resolution spectra and radial velocity (RV) measurements, along with RVs from the Lick planet search program. We combined our multi-epoch astrometry with these archival, partially unpublished RVs, and found that the companion is a low-mass star, not a brown dwarf, as previously suggested. We found the best-fitting dynamical masses to be $m_1=1.141_{-0.091}^{+0.037}$ and $m_2=0.279^{+0.023}_{-0.020}$ M$_odot$. We also performed spectral analysis of the SOPHIE spectra with the iSpec code. The Hipparcos time-series photometry shows a periodicity of $P=5.743$ d, which is also seen in SOPHIE spectra as an RV modulation of the star A. We interpret it as being caused by spots on the stellar surface, and the star to be rotating with the given period. From the rotation and level of activity, we found that the system is $380^{+220}_{-100}$ Myr old, consistent with an isochrone analysis ($220^{+2120}_{-90}$ Myr). This work may serve as a test case for future studies of low-mass stars, brown dwarfs and exoplanets by combination of RV and direct imaging data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا