ترغب بنشر مسار تعليمي؟ اضغط هنا

The internal angular momentum distribution of a star is key to determine its evolution. Fortunately, the stellar internal rotation can be probed through studies of rotationally-split non-radial oscillation modes. In particular, detection of non-radia l gravity modes (g modes) in massive young stars has become feasible recently thanks to the Kepler space mission. Our aim is to derive the internal rotation profile of the Kepler B8V star KIC 10526294 through asteroseismology. We interpret the observed rotational splittings of its dipole g modes using four different approaches based on the best seismic models of the star and their rotational kernels. We show that these kernels can resolve differential rotation the radiative envelope if a smooth rotational profile is assumed and the observational errors are small. Based on Kepler data, we find that the rotation rate near the core-envelope boundary is well constrained to $163pm89$ nHz. The seismic data are consistent with rigid rotation but a profile with counter-rotation within the envelope has a statistical advantage over constant rotation. Our study should be repeated for other massive stars with a variety of stellar parameters in order to deduce the physical conditions that determine the internal rotation profile of young massive stars, with the aim to improve the input physics of their models.
Measurement of the differential rotation of the Suns interior is one of the great achievements of helioseismology, providing important constraints for stellar physics. The technique relies on observing and analyzing rotationally-induced splittings of p-modes in the star. Here we demonstrate the first use of the technique in a laboratory setting. We apply it in a spherical cavity with a spinning central core (spherical-Couette flow) to determine the mean azimuthal velocity of the air filling the cavity. We excite a number of acoustic resonances (analogous to p-modes in the Sun) using a speaker and record the response with an array of small microphones on the outer sphere. Many observed acoustic modes show rotationally-induced splittings, which allow us to perform an inversion to determine the airs azimuthal velocity as a function of both radius and latitude. We validate the method by comparing the velocity field obtained through inversion against the velocity profile measured with a calibrated hot film anemometer. This modal acoustic velocimetry technique has great potential for laboratory setups involving rotating fluids in axisymmetric cavities. It will be useful especially in liquid metals where direct optical methods are unsuitable and ultrasonic techniques very challenging at best.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا