ترغب بنشر مسار تعليمي؟ اضغط هنا

Helioseismology in a bottle: modal acoustic velocimetry

44   0   0.0 ( 0 )
 نشر من قبل Santiago Triana
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurement of the differential rotation of the Suns interior is one of the great achievements of helioseismology, providing important constraints for stellar physics. The technique relies on observing and analyzing rotationally-induced splittings of p-modes in the star. Here we demonstrate the first use of the technique in a laboratory setting. We apply it in a spherical cavity with a spinning central core (spherical-Couette flow) to determine the mean azimuthal velocity of the air filling the cavity. We excite a number of acoustic resonances (analogous to p-modes in the Sun) using a speaker and record the response with an array of small microphones on the outer sphere. Many observed acoustic modes show rotationally-induced splittings, which allow us to perform an inversion to determine the airs azimuthal velocity as a function of both radius and latitude. We validate the method by comparing the velocity field obtained through inversion against the velocity profile measured with a calibrated hot film anemometer. This modal acoustic velocimetry technique has great potential for laboratory setups involving rotating fluids in axisymmetric cavities. It will be useful especially in liquid metals where direct optical methods are unsuitable and ultrasonic techniques very challenging at best.

قيم البحث

اقرأ أيضاً

Uncertainty quantification for Particle Image Velocimetry (PIV) is critical for comparing flow fields with Computational Fluid Dynamics (CFD) results, and model design and validation. However, PIV features a complex measurement chain with coupled, no n-linear error sources, and quantifying the uncertainty is challenging. Multiple assessments show that none of the current methods can reliably measure the actual uncertainty across a wide range of experiments. Because the current methods differ in assumptions regarding the measurement process and calculation procedures, it is not clear which method is best to use for an experiment. To address this issue, we propose a method to estimate an uncertainty methods sensitivity and reliability, termed the Meta-Uncertainty. The novel approach is automated, local, and instantaneous, and based on perturbation of the recorded particle images. We developed an image perturbation scheme based on adding random unmatched particles to the interrogation window pair considering the signal-to-noise (SNR) of the correlation plane. Each uncertainty schemes response to several trials of random particle addition is used to estimate a reliability metric, defined as the rate of change of the inter-quartile range (IQR) of the uncertainties with increasing levels of particle addition. We also propose applying the meta-uncertainty as a weighting metric to combine uncertainty estimates from individual schemes, based on ideas from the consensus forecasting literature. We use PIV measurements across a range of canonical flows to assess the performance of the uncertainty schemes.The results show that the combined uncertainty method outperforms the individual methods, and establish the meta-uncertainty as a useful reliability assessment tool for PIV uncertainty quantification.
A three-dimensional (3D) scanning velocimetry system is developed to quantify the 3D configurations of particles and their surrounding volumetric, three-component velocity fields. The approach uses a translating laser sheet to rapidly scan through a volume of interest and sequentially illuminate slices of the flow containing both tracers seeded in the fluid and particles comprising the aggregation of interest. These image slices are captured by a single high-speed camera, encoding information about the third spatial dimension within the image time-series. Where previous implementations of scanning systems have been developed for either volumetric flow quantification or 3D object reconstruction, we evaluate the feasibility of accomplishing these tasks concurrently with a single-camera, which can streamline data collection and analysis. The capability of the system was characterized using a study of induced vertical migrations of millimeter-scale brine shrimp (Artemia salina). Identification and reconstruction of individual swimmer bodies and 3D trajectories within the migrating aggregation were achieved up to the maximum number density studied presently, $8 , times,10^5$ animals per $textrm{m}^3$. This number density is comparable to the densities of previous depth-averaged 2D measurements of similar migrations. Corresponding velocity measurements of the flow indicate that the technique is capable of resolving the 3D velocity field in and around the swimming aggregation. At these animal number densities, instances of coherent flow induced by the migrations were observed. The accuracy of these flow measurements was confirmed in separate studies of a free jet at $Re_D = 50$.
We present here a comprehensive derivation for the speed of a small bottom-heavy sphere forced by a transverse acoustic field and thereby establish how density inhomogeneities may play a critical role in acoustic propulsion. The sphere is trapped at the pressure node of a standing wave whose wavelength is much larger than the sphere diameter. Due to its inhomogeneous density, the sphere oscillates in translation and rotation relative to the surrounding fluid. The perturbative flows induced by the spheres rotation and translation are shown to generate a rectified inertial flow responsible for a net mean force on the sphere that is able to propel the particle within the zero-pressure plane. To avoid an explicit derivation of the streaming flow, the propulsion speed is computed exactly using a suitable version of the Lorentz reciprocal theorem. The propulsion speed is shown to scale as the inverse of the viscosity, the cube of the amplitude of the acoustic field and is a non trivial function of the acoustic frequency. Interestingly, for some combinations of the constitutive parameters (fluid to solid density ratio, moment of inertia and centroid to center of mass distance), the direction of propulsion is reversed as soon as the frequency of the forcing acoustic field becomes larger than a certain threshold. The results produced by the model are compatible with both the observed phenomenology and the orders of magnitude of the measured velocities.
This article describes a video uploaded to the APS DFD Annual Meeting 2009 Gallery of Fluid Motion. The video contains both animations and still images from a three-dimensional volumetric velocimetry measurement set acquired in the flow around a Rushton turbine.
We propose a new approach to the generation of acoustic frequency combs (AFC) -- signals with spectra containing equidistant coherent peaks. AFCs are essential for a number of sensing and measurement applications, where the established technology of optical frequency combs suffers from fundamental physical limitations. Our proof-of-principle experiments demonstrate that nonlinear oscillations of a gas bubble cluster in water insonated by a low-pressure single-frequency ultrasound wave produce signals with spectra consisting of equally spaced peaks originating from the interaction of the driving ultrasound wave with the response of the bubble cluster at its natural frequency. The so-generated AFC posses essential characteristics of optical frequency combs and thus, similar to their optical counterparts, can be used to measure various physical, chemical and biological quantities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا