ترغب بنشر مسار تعليمي؟ اضغط هنا

Unlike NASAs original Kepler Discovery Mission, the renewed K2 Mission will stare at the plane of the Ecliptic, observing each field for approximately 75 days. This will bring new opportunities and challenges, in particular the presence of a large nu mber of main-belt asteroids that will contaminate the photometry. The large pixel size makes K2 data susceptible to the effect of apparent minor planet encounters. Here we investigate the effects of asteroid encounters on photometric precision using a sub-sample of the K2 Engineering data taken in February, 2014. We show examples of asteroid contamination to facilitate their recognition and distinguish these events from other error sources. We conclude that main-belt asteroids will have considerable effects on K2 photometry of a large number of photometric targets during the Mission, that will have to be taken into account. These results will be readily applicable for future space photometric missions applying large-format CCDs, such as TESS and PLATO.
The quantity and quality of satellite photometric data strings is revealing details in Cepheid variation at very low levels. Specifically, we observed a Cepheid pulsating in the fundamental mode and one pulsating in the first overtone with the Canadi an MOST satellite. The 3.7-d period fundamental mode pulsator (RT Aur) has a light curve that repeats precisely, and can be modeled by a Fourier series very accurately. The overtone pulsator (SZ Tau, 3.1 d period) on the other hand shows light curve variation from cycle to cycle which we characterize by the variations in the Fourier parameters. We present arguments that we are seeing instability in the pulsation cycle of the overtone pulsator, and that this is also a characteristic of the O-C curves of overtone pulsators. On the other hand, deviations from cycle to cycle as a function of pulsation phase follow a similar pattern in both stars, increasing after minimum radius. In summary, pulsation in the overtone pulsator is less stable than that of the fundamental mode pulsator at both long and short timescales.
The study of RR Lyrae stars has recently been invigorated thanks to the long, uninterrupted, ultra-precise time series data provided by the Kepler and CoRoT space telescopes. We give a brief overview of the new observational findings concentrating on the connection between period doubling and the Blazhko modulation, and the omnipresence of additional periodicities in all RR Lyrae subtypes, except for non-modulated RRab stars. Recent theoretical results demonstrate that if more than two modes are present in a nonlinear dynamical system such as a high-amplitude RR Lyrae star, the outcome is often an extremely intricate dynamical state. Thus, based on these discoveries, an underlying picture of complex dynamical interactions between modes is emerging which sheds new light on the century-old Blazhko-phenomenon, as well. New directions of theoretical efforts, like multi-dimensional hydrodynamical simulations, future space photometric missions and detailed spectroscopic investigations will pave the way towards a more complete understanding of the atmospheric and pulsation dynamics of these enigmatic touchstone objects.
We search for signs of period doubling in CoRoT RR Lyrae stars. The occurrence of this dynamical effect in modulated RR Lyrae stars might help us to gain more information about the mysterious Blazhko effect. The temporal variability of the additional frequencies in representatives of all subtypes of RR Lyrae stars is also investigated. We pre-process CoRoT light curves by applying trend and jump correction and outlier removal. Standard Fourier technique is used to analyze the frequency content of our targets and follow the time dependent phenomena. The most comprehensive collection of CoRoT RR Lyrae stars, including new discoveries is presented and analyzed. We found alternating maxima and in some cases half-integer frequencies in four CoRoT Blazhko RR Lyrae stars, as clear signs of the presence of period doubling. This reinforces that period doubling is an important ingredient to understand the Blazhko effect - a premise we derived previously from the Kepler RR Lyrae sample. As expected, period doubling is detectable only for short time intervals in most modulated RRab stars. Our results show that the temporal variability of the additional frequencies in all RR Lyrae sub-types is ubiquitous. The ephemeral nature and the highly variable amplitude of these variations suggest a complex underlying dynamics of and an intricate interplay between radial and possibly nonradial modes in RR Lyrae stars. The omnipresence of additional modes in all types of RR Lyrae - except in non-modulated RRab stars - implies that asteroseismology of these objects should be feasible in the near future (Abridged).
54 - R. Szabo , Z. Ivezic , L. L. Kiss 2013
We present and discuss an extensive data set for the non-Blazhko ab-type RR Lyrae star SDSSJ015450+001501, including optical SDSS ugriz light curves and spectroscopic data, LINEAR and CSS unfiltered optical light curves, and infrared 2MASS JHKs and W ISE W1 and W2 light curves. Most notably, light curves obtained by 2MASS include close to 9000 photometric measures collected over 3.3 years and provide exceedingly precise view of near-IR variability. These data demonstrate that static atmosphere models are insufficient to explain multi-band photometric light curve behavior and present strong constraints for non-linear pulsation models for RR Lyrae stars. It is a challenge to modelers to produce theoretical light curves that can explain data presented here, which we make publicly available.
97 - R. Szabo 2013
The Blazhko effect is the conspicuous amplitude and phase modulation of the pulsation of RR Lyrae stars that was discovered in the early 20th century. The field of study of this mysterious modulation has recently been invigorated thanks to the space photometric missions providing long, uninterrupted, ultra-precise time series data. In this paper I give a brief overview of the new observational findings related to the Blazhko effect, like extreme modulations, irregular modulation cycles and additional periodicities. I argue that these findings together with dedicated ground-based efforts now provide us with a fairly complete picture and a good starting point to theoretical investigations. Indeed, new, unpredicted dynamical phenomena have been discovered in Blazhko RR Lyrae stars, such as period doubling, high-order resonances, three-mode pulsation and low-dimensional chaos. These led to the proposal of a new explanation to this century-old enigma, namely a high-order resonance between radial modes. Along these lines I present the latest efforts and advances from the theoretical point of view. Lastly, amplitude variations in Cepheids are discussed.
140 - R. Szabo , Gy. M. Szabo , G. Dalya 2012
Aims. Hot Jupiters are thought to belong to single-planet systems. Somewhat surprisingly, some hot Jupiters have been reported to exhibit transit timing variations (TTVs). The aim of this paper is to identify the origin of these observations, identif y possible periodic biases leading to false TTV detections, and refine the sample to a few candidates with likely dynamical TTVs. Methods. We present TTV frequencies and amplitudes of hot Jupiters in Kepler Q0--6 data with Fourier analysis and a frequency-dependent bootstrap calculation to assess the false alarm probability levels of the detections. Results. We identified 36 systems with TTV above four standard deviation confidence, about half of them exhibiting multiple TTV frequencies. Fifteen of these objects (HAT-P-7b, KOI-13, 127, 183, 188, 190, 196, 225, 254, 428, 607, 609, 684, 774, 1176) probably show TTVs due to a systematic observational effect: long cadence data sampling is regularly shifted transit-by-transit, interacting with the transit light curves, introducing a periodic bias, and leading to a stroboscopic period. For other systems, the activity and rotation of the host star can modulate light curves and explain the observed TTVs. By excluding the systems that were inadequately sampled, showed TTV periods related to the stellar rotation, or turned out to be false positives or suspects, we ended up with seven systems. Three of them (KOI-186, 897, 977) show the weakest stellar rotation features, and these are our best candidates for dynamically induced TTV variations. Conclusions. Those systems with periodic TTVs that we cannot explain with systematics from observation, stellar rotation, activity, or inadequate sampling may be multiple systems or even exomoon hosts.
136 - R. Szabo , Z. Kollath , L. Molnar 2011
The origin of the conspicuous amplitude and phase modulation of the RR Lyrae pulsation - known as the Blazhko effect - is still a mystery after more than 100 years of its discovery. With the help of the Kepler space telescope we have revealed a new a nd unexpected phenomenon: period doubling in RR Lyr - the eponym and prototype of its class - as well as in other Kepler Blazhko RR Lyrae stars. We have found that period doubling is directly connected to the Blazhko modulation. Furthermore, with hydrodynamic model calculations we have succeeded in reproducing the period doubling and proved that the root cause of this effect is a high order resonance (9:2) between the fundamental mode and the 9th radial overtone, which is a strange mode. We discuss the implications of these recent findings on our understanding of the century-old Blazhko problem.
We report results of initial work done on selected candidate Cepheids to be observed with the Kepler space telescope. Prior to the launch 40 candidates were selected from previous surveys and databases. The analysis of the first 322 days of Kepler ph otometry, and recent ground-based follow-up multicolour photometry and spectroscopy allowed us to confirm that one of these stars, V1154 Cyg (KIC 7548061), is indeed a 4.9-d Cepheid. Using the phase lag method we show that this star pulsates in the fundamental mode. New radial velocity data are consistent with previous measurements, suggesting that a long-period binary component is unlikely. No evidence is seen in the ultra-precise, nearly uninterrupted Kepler photometry for nonradial or stochastically excited modes at the micromagnitude level. The other candidates are not Cepheids but an interesting mix of possible spotted stars, eclipsing systems and flare stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا