ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting CoRoT RR Lyrae stars: detection of period doubling and temporal variation of additional frequencies

156   0   0.0 ( 0 )
 نشر من قبل Robert Szabo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We search for signs of period doubling in CoRoT RR Lyrae stars. The occurrence of this dynamical effect in modulated RR Lyrae stars might help us to gain more information about the mysterious Blazhko effect. The temporal variability of the additional frequencies in representatives of all subtypes of RR Lyrae stars is also investigated. We pre-process CoRoT light curves by applying trend and jump correction and outlier removal. Standard Fourier technique is used to analyze the frequency content of our targets and follow the time dependent phenomena. The most comprehensive collection of CoRoT RR Lyrae stars, including new discoveries is presented and analyzed. We found alternating maxima and in some cases half-integer frequencies in four CoRoT Blazhko RR Lyrae stars, as clear signs of the presence of period doubling. This reinforces that period doubling is an important ingredient to understand the Blazhko effect - a premise we derived previously from the Kepler RR Lyrae sample. As expected, period doubling is detectable only for short time intervals in most modulated RRab stars. Our results show that the temporal variability of the additional frequencies in all RR Lyrae sub-types is ubiquitous. The ephemeral nature and the highly variable amplitude of these variations suggest a complex underlying dynamics of and an intricate interplay between radial and possibly nonradial modes in RR Lyrae stars. The omnipresence of additional modes in all types of RR Lyrae - except in non-modulated RRab stars - implies that asteroseismology of these objects should be feasible in the near future (Abridged).



قيم البحث

اقرأ أيضاً

185 - R. Szabo , Z. Kollath , L. Molnar 2011
The origin of the conspicuous amplitude and phase modulation of the RR Lyrae pulsation - known as the Blazhko effect - is still a mystery after more than 100 years of its discovery. With the help of the Kepler space telescope we have revealed a new a nd unexpected phenomenon: period doubling in RR Lyr - the eponym and prototype of its class - as well as in other Kepler Blazhko RR Lyrae stars. We have found that period doubling is directly connected to the Blazhko modulation. Furthermore, with hydrodynamic model calculations we have succeeded in reproducing the period doubling and proved that the root cause of this effect is a high order resonance (9:2) between the fundamental mode and the 9th radial overtone, which is a strange mode. We discuss the implications of these recent findings on our understanding of the century-old Blazhko problem.
Space-based photometric missions revealed a surprising abundance of millimagnitude-level additional modes in RR Lyrae stars. The modes that appear in the modulated fundamental-mode (RRab) stars can be ordered into four major categories. Here we prese nt the distribution of these groups in the Petersen diagram, and discuss their characteristics and connections to additional modes observed in other RR Lyrae stars.
The CoRoT (Convection, Rotation and planetary Transits) space mission provides a valuable opportunity to monitor stars with uninterrupted time sampling for up to 150 days at a time. The study of RR Lyrae stars, performed in the framework of the Addit ional Programmes belonging to the exoplanetary field, will particularly benefit from such dense, long-duration monitoring. The Blazhko effect in RR Lyrae stars is a long-standing, unsolved problem of stellar astrophysics. We used the CoRoT data of the new RR Lyrae variable CoRoT 101128793 (f0=2.119 c/d, P=0.4719296 d) to provide us with more detailed observational facts to understand the physical process behind the phenomenon. The CoRoT data were corrected for one jump and the long-term drift. We applied different period-finding techniques to the corrected timeseries to investigate amplitude and phase modulation. We detected 79 frequencies in the light curve of CoRoT 101128793. They have been identified as the main frequency f0, and its harmonics, two independent terms, the terms related to the Blazhko frequency, and several combination terms. A Blazhko frequency fB=0.056 c/d and a triplet structure around the fundamental radial mode and harmonics were detected, as well as a long-term variability of the Blazhko modulation. Indeed, the amplitude of the main oscillation is decreasing along the CoRoT survey. The Blazhko modulation is one of the smallest observed in RR Lyrae stars. Moreover, the additional modes f1=3.630 and f2=3.159 c/d are detected. Taking its ratio with the fundamental radial mode into account, the term f1 could be the identified as the second radial overtone. Detecting of these modes in horizontal branch stars is a new result obtained by CoRoT.
We analysed 30 RR Lyrae stars (RRLs) located in the Large Magellanic Cloud (LMC) globular cluster Reticulum that were observed in the 3.6 and 4.5 $mu$m passbands with the Infrared Array Camera (IRAC) on board of the Spitzer Space Telescope. We derive d new mid-infrared (MIR) period-luminosity PL relations. The zero points of the PL relations were estimated using the trigonometric parallaxes of five bright Milky Way (MW) RRLs measured with the Hubble Space Telescope (HST) and, as an alternative, we used the trigonometric parallaxes published in the first Gaia data release (DR1) which were obtained as part of the Tycho-Gaia Astrometric Solution (TGAS) and the parallaxes of the same stars released with the second Gaia data release (DR2). We determined the distance to Reticulum using our new MIR PL relations and found that distances calibrated on the TGAS and DR2 parallaxes are in a good agreement and, generally, smaller than distances based on the HST parallaxes, although they are still consistent within the respective errors. We conclude that Reticulum is located ~3 kpc closer to us than the barycentre of the LMC.
123 - Horace A. Smith 2013
Mira variables, RR Lyrae variables, and type II Cepheids all represent evolved states of low-mass stars, and long term observations have revealed that changes in pulsation period occur for each of these classes of variable. Most Mira variables show s mall or no period changes, but a few show large period changes that can plausibly be associated with thermal pulses on the asymptotic red giant branch. Individual RR Lyrae stars show period changes that do not accord with the predictions of stellar evolution theory. This may be especially true for RR Lyrae stars that exhibit the Blazhko effect. However, the average period changes of all of the RR Lyrae variables within a globular cluster prove a better but still imperfect match for the predictions of evolutionary theory. The observed period changes of short period type II Cepheids (BL Her stars) as well as those of long period type II Cepheids (W Vir stars) are in broad agreement with the rates of period changes expected from their evolutionary motions through the instability strip.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا