ترغب بنشر مسار تعليمي؟ اضغط هنا

101 - Ehud Behar 2015
The physical origin of radio emission in Radio Quiet Active Galactic Nuclei (RQ AGN) remains unclear, whether it is a downscaled version of the relativistic jets typical of Radio Loud (RL) AGN, or whether it originates from the accretion disk. The co rrelation between 5 GHz and X-ray luminosities of RQ AGN, which follows $L_R = 10^{-5}L_X$ observed also in stellar coronae, suggests an association of both X-ray and radio sources with the accretion disk corona. Observing RQ AGN at higher (mm-wave) frequencies, where synchrotron self absorption is diminished, and smaller regions can be probed, is key to exploring this association. Eight RQ AGN, selected based on their high X-ray brightness and variability, were observed at 95 GHz with the CARMA and ATCA telescopes. All targets were detected at the $1-10$ mJy level. Emission excess at 95~GHz of up to $times 7$ is found with respect to archival low-frequency steep spectra, suggesting a compact, optically-thick core superimposed on the more extended structures that dominate at low frequencies. Though unresolved, the 95 GHz fluxes imply optically thick source sizes of $10^{-4}-10^{-3}$ pc, or $sim 10 - 1000$ gravitational radii. The present sources lie tightly along an $L_R$ (95 GHz) = $10^{-4}L_X$ (2$-$10 keV) correlation, analogous to that of stellar coronae and RQ AGN at 5 GHz, while RL AGN are shown to have higher $L_R / L_X$ ratios. The present observations argue that simultaneous mm-wave and X-ray monitoring of RQ AGN features a promising method for understanding accretion disk coronal emission.
We present the results of a pilot JVLA project aimed at studying the bulk of the radio-emitting AGN population, unveiled by the NVSS/FIRST and SDSS surveys.We obtained A-array observations at the JVLA at 1.4, 4.5, and 7.5 GHz for 12 sources of the SD SS/NVSS sample. The radio maps reveal compact unresolved or slightly resolved radio structures on a scale of 1-3 kpc, with only one exception of a FRI/FRII source extended over $sim$40 kpc. We isolate the radio core component in most of them. The sample splits into two groups. Four sources have small black hole (BH) masses (mostly $sim$10$^{7}$ M$_{odot}$) and are hosted by blue galaxies, often showing evidence of a contamination from star formation to their radio emission and associated with radio-quiet AGN. The second group consists in seven radio-loud AGN, which live in red massive ($sim10^{11}$ M$_{odot}$) early-type galaxies, with large BH masses ($gtrsim$10$^{8}$ M$_{odot}$), and spectroscopically classified as Low Excitation Galaxies, all characteristics typical of FRI radio galaxies. They also lie on the correlation between radio core power and [O III] line luminosity defined by FRIs. However, they are more core dominated (by a factor of $sim$30) than FRIs and show a deficit of extended radio emission. We dub these sources FR0 to emphasize their lack of prominent extended radio emission, the single distinguishing feature with respect to FRIs. The differences in radio properties between FR0s and FRIs might be ascribed to an evolutionary effect, with the FR0 sources undergoing to rapid intermittency that prevents the growth of large scale structures. In our preferred scenario the lack of extended radio emission in FR0s is due to their smaller jet Lorentz $Gamma$ factor with respect to FRIs, causing possible instabilities and their premature disruption.[abridged]
Aims. We want to study the amount of molecular gas in a sample of nearby early-type galaxies (ETGs) which host low-luminosity Active Galactic Nuclei (AGN). We look for possible differences between the radio-loud (RL) and radio-quiet (RQ) AGN. Methods . We observed the CO(1-0) and CO(2-1) spectral lines with the IRAM 30m and NRO 45m telescopes for eight galaxies. They belong to a large sample of 37 local ETGs which host both RQ and RL AGN. We gather data from the literature for the entire sample. Results. We report the new detection of CO(1-0) emission in four galaxies (UGC0968, UGC5617, UGC6946, and UGC8355) and CO(2-1) emission in two of them (UGC0968 and UGC5617). The CO(2-1)/CO(1-0) ratio in these sources is $sim0.7pm0.2$. Considering both the new observations and the literature, the detection rate of CO in our sample is 55 $pm$ 9%, with no statistically significant difference between the hosts of RL and RQ AGNs. For all the detected galaxies we converted the CO luminosities into the molecular masses, $M_{H_2}$, that range from 10$^{6.5}$ to 10$^{8.5}$ M$_{odot}$, without any statistically significant differences between RL and RQ galaxies. This suggests that the amount of molecular gas does not likely set the radio-loudness of the AGN. Furthermore, despite the low statistical significance, the presence of a weak trend between the H$_{2}$ mass with various tracers of nuclear activity (mainly [O III] emission line nuclear power) cannot be excluded.
We select a sample of radio galaxies at high redshifts (z>~1) in the COSMOS field, by cross-matching optical/infrared images with the FIRST radio data. The aim of this study is to explore the high-z radio-loud (RL) AGN population at much lower lumino sities than the classical samples of distant radio sources and similar to those of the local population of radio galaxies. The wide multiwavelength coverage provided by the COSMOS survey allows us to derive their Spectral Energy Distributions (SEDs). The SED modeling with stellar and dust components (with our code 2SPD) returns several important quantities associated with the AGN and host properties. The final sample consists of 74 RL AGN, which extends the sample previously selected by Chiaberge et al. (2009) and studied by Baldi et al. (2013). The resulting photometric redshifts range from z~0.7 to 3. The sample mostly includes compact radio sources, but also 21 FRIIs; the radio power distribution of the sample at 1.4 GHz covers ~10^(31.5)-10^(34.3) ergsHz. The stellar mass of the hosts ranges ~10^(10)-10^(11.5) M_{sun}. The SEDs are dominated by the contribution from an old stellar population for most of the sources. UV and mid-IR (MIR) excesses are observed for half of the sample. The dust luminosities are in the range L_(dust) ~10^(43)-10^(45.5) erg/s (T ~350-1200 K). UV luminosities at 2000 A ranges ~10^(41.5)-10^(45.5) erg/s. UV emission is significantly correlated with both IR and radio luminosities, the former being the stronger link. However, the origin of UV and dust emission, whether it is produced by the AGN of by star formation, is still unclear. Our results show that this RL AGN population at high redshifts displays a wide variety of properties from possible quasars at the highest luminosities, to low-luminosity old galaxies, similarly to the local FRI-FRII dichotomy.
We explore the implications of our optical spectroscopic survey of 3CR radio sources with z<0.3 for the unified model (UM) for radio-loud AGN, focusing on objects with a FRII radio morphology. The sample contains 33 high ionization galaxies (HIGs) an d 18 broad line objects (BLOs). According to the UM, HIGs, the narrow line sources, are the nuclearly obscured counterparts of BLOs. The fraction of HIGs indicates a covering factor of the circumnuclear matter of 65% that corresponds, adopting a torus geometry, to an opening angle of 50+/-5 degree. No dependence on redshift and luminosity on the torus opening angle emerges. We also consider the implications for a clumpy torus. The distributions of radio luminosity of HIGs and BLOs are not statistically distinguishable, as expected from the UM. Conversely, BLOs have a radio core dominance, R, more than ten times larger than HIGs, as expected in case of jet Doppler boosting. Modeling the R distributions leads to an estimate of the jet bulk Lorentz factor of Gamma ~3-5. The test of the UM based on the radio source size is not conclusive due to the limited number of objects. Studying the emission line ([OIII], [OII]and [OI]) properties of HEGs and BLOs, we find evidences of a narrow line region (NLR) density stratification and its partial obscuration from the torus. In conclusion, the radio and NLR properties of HIGs and BLOs are consistent with the UM predictions. We also explored the radio properties of 21 3CR FRII low-ionization galaxies (LIGs) at z<0.3. We find that they cannot be part of the model that unifies HIGs and BLOs, but they are instead intrinsically different source, still reproduced by a randomly oriented population.
We study the Spectral Energy Distributions, SEDs, (from FUV to MIR bands) of the first sizeable sample of 34 low-luminosity radio galaxies at high redshifts, selected in the COSMOS field. To model the SEDs we use two different template-fitting techni ques: i) the Hyperz code that only considers single stellar templates and ii) our own developed technique 2SPD that also includes the contribution from a young stellar population and dust emission. The resulting photometric redshifts range from z ~0.7 to 3 and are in substantial agreement with measurements from earlier work, but significantly more accurate. The SED of most objects is consistent with a dominant contribution from an old stellar population with an age ~1 - 3 10^{9} years. The inferred total stellar mass range is ~10^{10} - 10^{12} M(sun). Dust emission is needed to account for the 24micron emission in 15 objects. Estimates of the dust luminosity yield values in the range L_{dust} ~10^{43.5} -10^{45.5} erg s^{-1}. The global dust temperature, crudely estimated for the sources with a MIR excess, is ~ 300-850 K. A UV excess is often observed with a luminosity in the range ~ 10^{42}-10^{44} erg s^{-1} at 2000 A rest frame. Our results show that the hosts of these high-z low-luminosity radio sources are old massive galaxies, similarly to the local FRIs. However, the UV and MIR excesses indicate the possible significant contribution from star formation and/or nuclear activity in such bands, not seen in low-z FRIs. Our sources display a wide variety of properties: from possible quasars at the highest luminosities, to low-luminosity old galaxies.
122 - R. D. Baldi 2010
Using HST NICMOS 2 observations we have measured 1.6-micron near infrared nuclear luminosities of 100 3CR radio galaxies with z<0.3, by modeling and subtracting the extended emission from the host galaxy. We performed a multi-wavelength statistical a nalysis (including optical and radio data) of the properties of the nuclei following classification of the objects into FRI and FRII, and LIG (low-ionization galaxies), HIG (high-ionization galaxies) and BLO (broad-lined objects) using the radio morphology and optical spectra, respectively. The correlations among near infrared, optical, and radio nuclear luminosity support the idea that the near infrared nuclear emission of FRIs has a non-thermal origin. Despite the difference in radio morphology, the multi-wavelength properties of FRII LIG nuclei are statistically indistinguishable from those of FRIs, an indication of a common structure of the central engine. All BLOs show an unresolved near infrared nucleus and a large near infrared excess with respect to FRII LIGs and FRIs of equal radio core luminosity. This requires the presence of an additional (and dominant) component other than the non-thermal light. Considering the shape of their spectral energy distribution, we ascribe the origin of their near infrared light to hot circumnuclear dust. A near infrared excess is also found in HIGs, but their nuclei are substantially fainter than those of BLO. This result indicates that substantial obscuration along the line-of-sight to the nuclei is still present at 1.6 micron. Nonetheless, HIGs nuclei cannot simply be explained in terms of dust obscuration: a significant contribution from light reflected in a circumnuclear scattering region is needed to account for their multiwavelength properties.
In a previous paper we showed that the radio sources selected by combining large areas radio and optical surveys, present a strong deficit of radio emission with respect to 3CR radio-galaxies matched in line emission luminosity. We argued that the pr evalence of sources with luminous extended radio structures in high flux limited samples is due to a selection bias. Sources with low radio power form the bulk of the radio-loud AGN population but are still virtually unexplored. We here analyze their photometric and spectroscopic properties. From the point of view of their emission lines, the majority of the sample are Low Excitation Galaxies (LEG), similar to the 3CR objects at the same level of line luminosity. The hosts of LEG are red, massive Early-Type Galaxies (ETG) with large black holes masses , statistically indistinguishable from the hosts of low redshift 3CR/LEG sources. No genuine radio-loud LEG could be found associated with black holes with a mass substantially lower than 10^8 M(sun) or with a late type host. The fraction of galaxies with signs of star formation (5%) is similar to what is found in both the quiescent ETG and 3CR/LEG hosts. We conclude that the deficit in radio emission cannot be ascribed to differences in the properties of their hosts. We argue that instead this could be due to a temporal evolution of the radio luminosity. A minority (10%) of the sample show rather different properties, being associated with low black hole masses, with spiral galaxies, or showing a high excitation spectrum. In general these outliers are the result of the contamination from Seyfert and from galaxies where the radio emission is powered by star formation. For the objects with high excitation spectra there is no a clear discontinuity in either the host or nuclear properties as they span from radio-quiet and radio-loud AGN.
We explore radio and spectroscopic properties of a sample of 14 miniature radio galaxies, i.e. early-type core galaxies hosting radio-loud AGN of extremely low radio power, 10^(27-29) erg s^(-1) Hz^(-1) at 1.4 GHz. Miniature radio galaxies smoothly e xtend the relationships found for the more powerful FRI radio galaxies between emission line, optical and radio nuclear luminosities to lower levels. However, they have a deficit of a factor of ~100 in extended radio emission with respect to that of the classical example of 3CR/FRI. This is not due to their low luminosity, since we found radio galaxies of higher radio core power, similar to those of 3CR/FRI, showing the same behavior, i.e. lacking significant extended radio emission. Such sources form the bulk of the population of radio-loud AGN in the Sloan Digital Sky Survey. At a given level of nuclear emission, one can find radio sources with an extremely wide range, a factor of >~100, of radio power. We argue that the prevalence of sources with luminous extended radio structures in flux limited samples is due to a selection bias, since the inclusion of such objects is highly favored. The most studied catalogues of radio galaxies are thus composed by the minority of radio-loud AGN that meet the physical conditions required to form extended radio sources, while the bulk of the population is virtually unexplored.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا