ترغب بنشر مسار تعليمي؟ اضغط هنا

The 1.6 micron near infrared nuclei of 3C radio galaxies: Jets, thermal emission or scattered light?

170   0   0.0 ( 0 )
 نشر من قبل Ranieri Diego Baldi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. D. Baldi




اسأل ChatGPT حول البحث

Using HST NICMOS 2 observations we have measured 1.6-micron near infrared nuclear luminosities of 100 3CR radio galaxies with z<0.3, by modeling and subtracting the extended emission from the host galaxy. We performed a multi-wavelength statistical analysis (including optical and radio data) of the properties of the nuclei following classification of the objects into FRI and FRII, and LIG (low-ionization galaxies), HIG (high-ionization galaxies) and BLO (broad-lined objects) using the radio morphology and optical spectra, respectively. The correlations among near infrared, optical, and radio nuclear luminosity support the idea that the near infrared nuclear emission of FRIs has a non-thermal origin. Despite the difference in radio morphology, the multi-wavelength properties of FRII LIG nuclei are statistically indistinguishable from those of FRIs, an indication of a common structure of the central engine. All BLOs show an unresolved near infrared nucleus and a large near infrared excess with respect to FRII LIGs and FRIs of equal radio core luminosity. This requires the presence of an additional (and dominant) component other than the non-thermal light. Considering the shape of their spectral energy distribution, we ascribe the origin of their near infrared light to hot circumnuclear dust. A near infrared excess is also found in HIGs, but their nuclei are substantially fainter than those of BLO. This result indicates that substantial obscuration along the line-of-sight to the nuclei is still present at 1.6 micron. Nonetheless, HIGs nuclei cannot simply be explained in terms of dust obscuration: a significant contribution from light reflected in a circumnuclear scattering region is needed to account for their multiwavelength properties.



قيم البحث

اقرأ أيضاً

60 - Kei Sano , Shuji Matsuura 2017
Near-infrared (IR) diffuse Galactic light (DGL) consists of scattered light and thermal emission from interstellar dust grains illuminated by interstellar radiation field (ISRF). At 1.25 and 2.2um, recent observational study shows that intensity rati os of the DGL to interstellar 100um dust emission steeply decrease toward high Galactic latitudes (b). In this paper, we investigate origin(s) of the b-dependence on the basis of models of thermal emission and scattered light. Combining a thermal emission model with regional variation of the polycyclic aromatic hydrocarbon abundance observed with Planck, we show that contribution of the near-IR thermal emission component to the observed DGL is less than ~20%. We also examine the b-dependence of the scattered light, assuming a plane-parallel Galaxy with smooth distributions of the ISRF and dust density along vertical direction, and assuming a scattering phase function according to a recently developed model of interstellar dust. We normalize the scattered light intensity to the 100um intensity corrected for deviation from the cosecant-b law according to the Planck observation. As the result, the present model taking all the b-dependence of dust and ISRF properties can account for the observed b-dependence of the near-IR DGL. However, uncertainty of the correction for the 100um emission is large and other normalizing quantities may be appropriate for more robust analysis of the DGL.
365 - Hermine Landt 2011
We use quasi-simultaneous near-infrared (near-IR) and optical spectroscopy from four observing runs to study the continuum around 1 micron in 23 well-known broad-emission line active galactic nuclei (AGN). We show that, after correcting the optical s pectra for host galaxy light, the AGN continuum around this wavelength can be approximated by the sum of mainly two emission components, a hot dust blackbody and an accretion disc. The accretion disc spectrum appears to dominate the flux at ~1 micron, which allows us to derive a relation for estimating AGN black hole masses based on the near-IR virial product. This result also means that a near-IR reverberation programme can determine the AGN state independent of simultaneous optical spectroscopy. On average we derive hot dust blackbody temperatures of ~1400 K, a value close to the sublimation temperature of silicate dust grains, and relatively low hot dust covering factors of ~7%. Our preliminary variability studies indicate that in most sources the hot dust emission responds to changes in the accretion disc flux with the expected time lag, however, a few sources show a behaviour that can be attributed to dust destruction.
We report on our Chandra Cycle 9 program to observe half of the 60 (unobserved by Chandra) 3C radio sources at z<0.3 for 8 ksec each. Here we give the basic data: the X-ray intensity of the nuclei and any features associated with radio structures suc h as hot spots and knots in jets. We have measured fluxes in soft, medium and hard bands and are thus able to isolate sources with significant intrinsic column density. For the stronger nuclei, we have applied the standard spectral analysis which provides the best fit values of X-ray spectral index and column density. We find evidence for intrinsic absorption exceeding a column density of 10^{22} cm^{-2} for one third of our sources.
Recent analyses of the broad spectral energy distributions (SED) of extensive lobes of local radio-galaxies have confirmed the leptonic origin of their Fermi/LAT gamma-ray emission, significantly constraining the level of hadronic contribution. SED o f distant (D > 125 Mpc) radio-galaxy lobes are currently limited to the radio and X-ray bands, hence give no information on the presence of non-thermal (NT) protons but are adequate to describe the properties of NT electrons. Modeling lobe radio and X-ray emission in 3C 98, Pictor A, DA 240, Cygnus A, 3C 326, and 3C 236, we fully determine the properties of intra-lobe NT electrons and estimate the level of the related gamma-ray emission from Compton scattering of the electrons off the superposed Cosmic Microwave Background, Extragalactic Background Light, and source-specific radiation fields.
We present medium spectral resolution near-infrared (NIR) HK-band spectra for 8 low redshift (z<0.06) radio galaxies to study the NIR stellar properties of their host galaxies. As a homogeneous comparison sample, we used 9 inactive elliptical galaxie s that were observed with similar resolution and wavelength range. The aim of the study is to compare the NIR spectral properties of radio galaxies to those of inactive early-type galaxies and, furthermore, produce the first NIR HK-band spectra for low redshift radio galaxies. For both samples spectral indices of several diagnostic absorption features, SiI(1.589microns), CO(1.619microns), NaI(2.207microns), CaI(2.263microns), CO(>2.29microns), were measured. To characterize the age of the populations, the measured EWs of the absorption features were fitted with the corresponding theoretical evolutionary curves of the EWs calculated by the stellar synthesis model. On average, EW(CO 2.29) of radio galaxies is somewhat greater than that of inactive ellipticals. Most likely, EW(CO 2.29) is not significantly affected by dilution, and thus indicating that elliptical galaxies containing AGN are in a different stage in their evolution than inactive ellipticals. This is also supported by comparing other NIR features, such as CaI and NaI, with each other. Absorption features are consistent with the intermediate age stellar population, suggesting that host galaxies contain both an old and intermediate age components. It is consistent with previous optical spectroscopy studies which have shown evidence on the intermediate age (~2 Gyr) stellar population of radio galaxies, and also in some of the early-type galaxies. The existence of intermediate age population is a link between the star formation episode, possibly induced by interaction or merging event, and the triggering of the nuclear activity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا