ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of Millimeter-Wave Excess Emission in Radio-Quiet Active Galactic Nuclei

161   0   0.0 ( 0 )
 نشر من قبل Ranieri Diego Baldi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ehud Behar




اسأل ChatGPT حول البحث

The physical origin of radio emission in Radio Quiet Active Galactic Nuclei (RQ AGN) remains unclear, whether it is a downscaled version of the relativistic jets typical of Radio Loud (RL) AGN, or whether it originates from the accretion disk. The correlation between 5 GHz and X-ray luminosities of RQ AGN, which follows $L_R = 10^{-5}L_X$ observed also in stellar coronae, suggests an association of both X-ray and radio sources with the accretion disk corona. Observing RQ AGN at higher (mm-wave) frequencies, where synchrotron self absorption is diminished, and smaller regions can be probed, is key to exploring this association. Eight RQ AGN, selected based on their high X-ray brightness and variability, were observed at 95 GHz with the CARMA and ATCA telescopes. All targets were detected at the $1-10$ mJy level. Emission excess at 95~GHz of up to $times 7$ is found with respect to archival low-frequency steep spectra, suggesting a compact, optically-thick core superimposed on the more extended structures that dominate at low frequencies. Though unresolved, the 95 GHz fluxes imply optically thick source sizes of $10^{-4}-10^{-3}$ pc, or $sim 10 - 1000$ gravitational radii. The present sources lie tightly along an $L_R$ (95 GHz) = $10^{-4}L_X$ (2$-$10 keV) correlation, analogous to that of stellar coronae and RQ AGN at 5 GHz, while RL AGN are shown to have higher $L_R / L_X$ ratios. The present observations argue that simultaneous mm-wave and X-ray monitoring of RQ AGN features a promising method for understanding accretion disk coronal emission.



قيم البحث

اقرأ أيضاً

Active Galactic Nuclei are the dominant sources of gamma rays outside our Galaxy and also candidates for being the source of ultra-high energy cosmic rays. In addition to being emitters of broad-band non-thermal radiation throughout the electromagnet ic spectrum, their emission is highly variable on timescales from years to minutes. Hence, high-cadence monitoring observations are needed to understand their emission mechanisms. The Africa Millimetre Telescope is planned to be the first mm-wave radio telescope on the African continent and one of few in the Southern hemisphere. Further to contributing to the global mm-VLBI observations with the Event Horizon Telescope, substantial amounts of observation time will be available for monitoring observations of Active Galactic Nuclei. Here we review the scientific scope of the Africa Millimetre Telescope for monitoring of Active Galactic Nuclei at mm-wavelengths.
223 - J. F. Radcliffe 2021
For nearly seven decades astronomers have been studying active galaxies, that is to say galaxies with actively accreting central supermassive black holes, AGN. A small fraction of these are characterized by luminous, powerful radio emission: this cla ss is known as radio-loud. A substantial fraction, the so-called radio-quiet AGN population, displays intermediate or weak radio emission. However, an appreciable fraction of strong X-rays emitting AGN are characterized by the absence of radio emission, down to an upper limit of about $10^{-7}$ times the luminosity of the most powerful radio-loud AGN. We wish to address the nature of these - seemingly radio-silent - X-ray-luminous AGN and their host galaxies: is there any radio emission, and if so, where does it originate? Focusing on the GOODS-N field, we examine the nature of these objects employing stacking techniques on ultra-deep radio data obtained with the JVLA. We combine these radio data with Spitzer far-infrared data. We establish the absence, or totally insignificant contribution of jet-driven radio-emission in roughly half of the otherwise normal population of X-ray luminous AGN, which appear to reside in normal star-forming galaxies. We conclude that AGN- or jet-driven radio emission is simply a mechanism that may be at work or may be dormant in galaxies with actively accreting black holes. The latter can be classified as radio-silent AGN.
224 - Ranieri D. Baldi 2015
We report short-cadence monitoring of a radio-quiet Active Galactic Nuclei (AGN), NGC7469, at 95 GHz (3 mm) over a period of 70 days with the CARMA telescope. The AGN varies significantly ($pm3sigma$ from the mean) by a factor of two within 4-5 days. The intrinsic 95 GHz variability amplitude in excess of the measurement noise (10%) and relative to the mean flux is comparable to that in the X-rays, and much higher than at 8.4 GHz. The mm-band variability and its similarity to the X-ray variability adds to the evidence that the mm and X-ray emission have the same physical origin, and are associated with the accretion disk corona.
Most investigations of the X-ray variability of active galactic nuclei (AGN) have been concentrated on the detailed analyses of individual, nearby sources. A relatively small number of studies have treated the ensemble behaviour of the more general A GN population in wider regions of the luminosity-redshift plane. We want to determine the ensemble variability properties of a rich AGN sample, called Multi-Epoch XMM Serendipitous AGN Sample (MEXSAS), extracted from the fifth release of the XMM-Newton Serendipitous Source Catalogue (XMMSSC-DR5), with redshift between 0.1 and 5, and X-ray luminosities in the 0.5-4.5 keV band between 10^42 and 10^47 erg/s. We urge caution on the use of the normalised excess variance (NXS), noting that it may lead to underestimate variability if used improperly. We use the structure function (SF), updating our previous analysis for a smaller sample. We propose a correction to the NXS variability estimator, accounting for the light curve duration in the rest frame on the basis of the knowledge of the variability behaviour gained by SF studies. We find an ensemble increase of the X-ray variability with the rest-frame time lag tau, given by tau^0.12. We confirm an inverse dependence on the X-ray luminosity, approximately as L_X^-0.19. We analyse the SF in different X-ray bands, finding a dependence of the variability on the frequency as nu^-0.15, corresponding to a softer when brighter trend. In turn, this dependence allows us to parametrically correct the variability estimated in observer-frame bands to that in the rest frame, resulting in a moderate shift upwards (V-correction). Ensemble X-ray variability of AGNs is best described by the structure function. An improper use of the normalised excess variance may lead to an underestimate of the intrinsic variability, so that appropriate corrections to the data or the models must be applied to prevent these effects.
Seyfert galaxies commonly host compact jets spanning 10-100 pc scales, but larger structures (KSRs) are resolved out in long baseline, aperture synthesis surveys. We report a new, short baseline Very Large Array (VLA) survey of a complete sample of S eyfert and LINER galaxies. Out of all of the surveyed radio-quiet sources, we find that 44% (19 / 43) show extended radio structures at least 1 kpc in total extent that do not match the morphology of the disk or its associated star-forming regions. The KSR Seyferts stand out by deviating significantly from the far-infrared - radio correlation for star-forming galaxies, and they are more likely to have a relatively luminous, compact radio source in the nucleus; these results argue that KSRs are powered by the AGN rather than starburst. KSRs probably originate from jet plasma that has been decelerated by interaction with the nuclear ISM. We demonstrate the jet loses virtually all of its power to the ISM within the inner kiloparsec to form the slow KSRs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا