ترغب بنشر مسار تعليمي؟ اضغط هنا

The ubiquitous diffuse soft (1/4 keV) X-ray background was one of the earliest discoveries of X-ray astronomy. At least some of the emission may arise from charge exchange between solar wind ions and neutral atoms in the heliosphere, but no detailed models have been fit to the available data. Here we report on a new model for charge exchange in the solar wind, which when combined with a diffuse hot plasma component filling the Local Cavity provides a good fit to the only available high-resolution soft X-ray and extreme ultraviolet (EUV) spectra using plausible parameters for the solar wind. The implied hot plasma component is in pressure equilibrium with the local cloud that surrounds the solar system, creating for the first time a self-consistent picture of the local interstellar medium.
Modern society has led many people to become consumers of data unlike previous generations. How this shift in the way information is communicated and received - including in areas of science - and affects perception and comprehension is still an open question. This study examined one aspect of this digital age: perceptions of astronomical images and their labels, on mobile platforms. Participants were n = 2183 respondents to an online survey, and two focus groups (n = 12 astrophysicists; n = 11 lay public). Online participants were randomly assigned to 1 of 12 images, and compared two label formats. Focus groups compared mobile devices and label formats. Results indicated that the size and quality of the images on the mobile devices affected label comprehension and engagement. The question label format was significantly preferred to the fun fact. Results are discussed in terms of effective science communication using technology.
In this paper, we describe a representation for spatial information, called the stochastic map, and associated procedures for building it, reading information from it, and revising it incrementally as new information is obtained. The map contains the estimates of relationships among objects in the map, and their uncertainties, given all the available information. The procedures provide a general solution to the problem of estimating uncertain relative spatial relationships. The estimates are probabilistic in nature, an advance over the previous, very conservative, worst-case approaches to the problem. Finally, the procedures are developed in the context of state-estimation and filtering theory, which provides a solid basis for numerous extensions.
The Solar Spectroscopy Explorer (SSE) concept is conceived as a scalable mission, with two to four instruments and a strong focus on coronal spectroscopy. In its core configuration it is a small strategic mission ($250-500M) built around a microcalor imeter (an imaging X-ray spectrometer) and a high spatial resolution (0.2 arcsec) EUV imager. SSE puts a strong focus on the plasma spectroscopy, balanced with high resolution imaging - providing for break-through imaging science as well as providing the necessary context for the spectroscopy suite. Even in its smallest configuration SSE provides observatory class science, with significant science contributions ranging from basic plasma and radiative processes to the onset of space weather events. The basic configuration can carry an expanded instrument suite with the addition of a hard X-ray imaging spectrometer and/or a high spectral resolution EUV instrument - significantly expanding the science capabilities. In this configuration, it will fall at the small end of the medium class missions, and is described below as SSE+. This scalable mission in its largest configuration would have the full complement of these instruments and becomes the RAM (Reconnection And Microscale) mission. This mission has been designed to address key outstanding issues in coronal physics, and to be highly complementary to missions such as Solar Probe Plus, Solar Orbiter, and Solar-C as well as ground-based observatories.
Some 400 years after Galileo, modern telescopes have enabled humanity to see what the natural eye cannot. Astronomical images today contain information about incredibly large objects located across vast distances and reveal information found in invis ible radiation ranging from radio waves to X-rays. The current generation of telescopes has created an explosion of images available for the public to explore. This has, importantly, coincided with the maturation of the Internet. Every major telescope has a web site, often with an extensive gallery of images. New and free downloadable tools exist for members of the public to explore astronomical data and even create their own images. In short, a new era of an accessible universe has been entered, in which the public can participate and explore like never before. But there is a severe lack of scholarly and robust studies to probe how people - especially non-experts - perceive these images and the information they attempt to convey. Most astronomical images for the public have been processed (e.g., color choices, artifact removal, smoothing, cropping/field-of-view shown) to strike a balance between the science being highlighted and the aesthetics designed to engage the public. However, the extent to which these choices affect perception and comprehension is, at best, poorly understood. The goal of the studies presented here was to begin a program of research to better understand how people perceive astronomical images, and how such images, and the explanatory material that accompanies them, can best be presented to the public in terms of understanding, appreciation, and enjoyment of the images and the science that underlies them.
We describe the effect that new atomic calculations, including fully-relativistic R-matrix calculations of collisional excitation rates and level-specific dielectronic and radiative recombination rates, have on line ratios from the astrophysically si gnificant ion Ne IX. The new excitation rates systematically change some predicted Ne IX line ratios by 25% at temperatures at or below the temperature of maximum emissivity (4x10^6 K), while the new recombination rates lead to systematic changes at higher temperatures. The new line ratios are shown to agree with observations of Capella and sigma^2 CrB significantly better than older line ratios, showing that 25-30% accuracy in atomic rates is inadequate for high-resolution X-ray observations from existing spectrometers.
Astrophysical shocks or bursts from a photoionizing source can disturb the typical collisional plasma found in galactic interstellar media or the intergalactic medium. The spectrum emitted by this plasma contains diagnostics that have been used to de termine the time since the disturbing event, although this determination becomes uncertain as the elements in the plasma return to ionization equilibrium. A general solution for the equilibrium timescale for each element arises from the elegant eigenvector method of solution to the problem of a non-equilibrium plasma described by Masai (1984) and Hughes & Helfand (1985). In general the ionization evolution of an element Z in a constant electron temperature plasma is given by a coupled set of Z+1 first order differential equations. However, they can be recast as Z uncoupled first order differential equations using an eigenvector basis for the system. The solution is then Z separate exponential functions, with the time constants given by the eigenvalues of the rate matrix. The smallest of these eigenvalues gives the scale of slowest return to equilibrium independent of the initial conditions, while conversely the largest eigenvalue is the scale of the fastest change in the ion population. These results hold for an ionizing plasma, a recombining plasma, or even a plasma with random initial conditions, and will allow users of these diagnostics to determine directly if their best-fit result significantly limits the timescale since a disturbance or is so close to equilibrium as to include an arbitrarily-long time.
The International X-ray Observatory (IXO) is a joint ESA-JAXA-NASA effort to address fundamental and timely questions in astrophysics: What happens close to a black hole? How did supermassive black holes grow? How does large scale structure form? Wha t is the connection between these processes? To address these questions IXO will employ optics with 3 sq m collecting area and 5 arc sec angular resolution - 20 times more collecting area at 1 keV than any previous X-ray observatory. Focal plane instruments will deliver a 100-fold increase in effective area for high-resolution spectroscopy, deep spectral imaging over a wide field of view, unprecedented polarimetric sensitivity, microsecond spectroscopic timing, and high count rate capability. The mission is being planned for launch in 2021 to an L2 orbit, with a five-year lifetime and consumables for 10 years.
76 - Randall K. Smith 2008
The exquisite angular resolution available with Chandra should allow precision measurements of faint diffuse emission surrounding bright sources, such as the X-ray scattering halos created by interstellar dust. However, the ACIS CCDs suffer from pile up when observing bright sources, and this creates difficulties when trying to extract the scattered halo near the source. The initial study of the X-ray halo around GX13+1 using only the ACIS-I detector done by Smith, Edgar & Shafer (2002) suffered from a lack of sensitivity within 50 of the source, limiting what conclusions could be drawn. To address this problem, observations of GX13+1 were obtained with the Chandra HRC-I and simultaneously with the RXTE PCA. Combined with the existing ACIS-I data, this allowed measurements of the X-ray halo between 2-1000. After considering a range of dust models, each assumed to be smoothly distributed with or without a dense cloud along the line of sight, the results show that there is no evidence in this data for a dense cloud near the source, as suggested by Xiang et al. (2005). Finally, although no model leads to formally acceptable results, the Weingartner & Draine (2001) and nearly all of the composite grain models from Zubko, Dwek & Arendt (2004) give poor fits.
We observed with Suzaku the symbiotic star SS73 17, motivated by the discovery by the INTEGRAL satellite and the Swift BAT survey that it emits hard X-rays. Our observations showed a highly-absorbed X-ray spectrum with NH > 10^23 cm-2, equivalent to A_V > 26, although the source has B magnitude 11.3 and is also bright in UV. The source also shows strong, narrow iron lines including fluorescent Fe K as well as Fe xxv and Fe xxvi. The X-ray spectrum can be fit with a thermal model including an absorption component that partially covers the source. Most of the equivalent width of the iron fluorescent line in this model can be explained as a combination of reprocessing in a dense absorber plus reflection off a white dwarf surface, but it is likely that the continuum is partially seen in reflection as well. Unlike other symbiotic systems that show hard X-ray emission (CH Cyg, RT Cru, T CrB, GX1+4), SS73 17 is not known to have shown nova-like optical variability, X-ray flashes, or pulsations, and has always shown faint soft X-ray emission. As a result, although it is likely a white dwarf, the nature of the compact object in SS73 17 is still uncertain. SS73 17 is probably an extreme example of the recently discovered and relatively small class of hard X-ray emitting symbiotic systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا