ترغب بنشر مسار تعليمي؟ اضغط هنا

80 - Preeti Kharb 2014
We present here the results from dual-frequency phase-referenced VLBI observations of the Seyfert galaxy KISSR1494, which exhibits double peaked emission lines in its SDSS spectrum. We detect a single radio component at 1.6 GHz, but not at 5 GHz impl ying a spectral index steeper than $-1.5pm0.5$ ($S_ upropto u^alpha$). The high brightness temperature of the radio component ($sim1.4times10^7$ K) and the steep radio spectrum support a non-thermal synchrotron origin. A crude estimate of the black hole mass derived from the $M_{BH}-sigma_{star}$ relation is $sim1.4pm1.0times10^8$ Msun; it is accreting at an Eddington rate of $sim0.02$. The radio data are consistent with either the radio emission coming from the parsec-scale base of a synchrotron wind originating in the magnetised corona above the accretion disk, or from the inner ionised edge of the accretion disk or torus. In the former case, the narrow line region (NLR) clouds may form a part of the broad outflow, while in the latter, the NLR clouds may form a part of an extended disk beyond the torus. The radio and NLR emission may also be decoupled so that the radio emission originates in an outflow while the NLR is in a disk, and vice versa. While with the present data, it is not possible to clearly distinguish between these scenarios, there appears to be greater circumstantial evidence supporting the coronal wind picture in KISSR1494. From the kiloparsec-scale radio emission, the time-averaged kinetic power of this outflow is estimated to be $Qapprox1.5times10^{42}$ erg s$^{-1}$, which is typical of radio outflows in low-luminosity AGN. This supports the idea that radio jets and outflowing coronal winds are indistinguishable in Seyfert galaxies.
Here we present the first results from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) which aims to investigate the physics of ~140 radio-detected southern active Galaxies with z<0.02 through Integral Field Spectroscopy using t he Wide Field Spectrograph (WiFeS). This instrument provides data cubes of the central 38 x 25 arc sec. of the target galaxies in the waveband 340-710nm with the unusually high resolution of R=7000 in the red (530-710nm), and R=3000 in the blue (340-560nm). These data provide the morphology, kinematics and the excitation structure of the extended narrow-line region, probe relationships with the black hole characteristics and the host galaxy, measures host galaxy abundance gradients and the determination of nuclear abundances from the HII regions. From photoionisation modelling, we may determine the shape of the ionising spectrum of the AGN, discover whether AGN metallicities differ from nuclear abundances determined from HII regions, and probe grain destruction in the vicinity of the AGN. Here we present some preliminary results and modelling of both Seyfert galaxies observed as part of the survey.
333 - P. Kharb 2014
We present the results of high resolution VLBI observations at 1.6 and 4.9 GHz of the radio-loud Seyfert galaxy, Mrk 6. These observations are able to detect a compact radio core in this galaxy for the first time. The core has an inverted spectral in dex ($alpha^{1.6}_{4.9}$=+1.0$pm$0.2) and a brightness temperature of $1times10^8$ K. Three distinct radio components which resemble jet elements and/or hot spots, are also detected. The position angles of these elongated jet elements point, not only to a curved jet in Mrk 6, but also towards a connection between the AGN and the kpc-scale radio lobes/bubbles in this galaxy. Firmer constraints on the star formation rate provided by new Herschel observations (SFR $<0.8$ M$_sun$ yr$^{-1}$) make the starburst-wind powered bubble scenario implausible. From plasma speeds obtained via prior Chandra X-ray observations, and ram pressure balance arguments for the ISM and radio bubbles, the north-south bubbles are expected to take $7.5times10^6$ yr to form, and the east-west bubbles $1.4times10^6$ yr. We suggest that the jet axis has changed at least once in Mrk 6 within the last $approx10^7$ yr. A comparison of the nuclear radio-loudness of Mrk 6 and a small sample of Seyfert galaxies with a subset of low-luminosity FRI radio galaxies reveals a continuum in radio properties.
Seyfert galaxies have traditionally been classified as radio-quiet active galactic nuclei. A proper consideration of the nuclear optical emission however proves that a majority of Seyferts are radio-loud. Kpc-scale radio lobes/bubbles are in fact rev ealed in sensitive observations at low radio frequencies of several Seyferts. Through the use of very long baseline interferometry, we have been able to determine the direction of the parsec-scale jets in some of these Seyfert galaxies. The misalignment between the parsec-scale jets and the kpc-scale lobes that is typically observed, is either suggestive of no connection between the two, or the presence of curved jets that power the radio lobes. In this context, we briefly discuss our new low radio frequency GMRT observations of two Seyfert galaxies with lobes.
62 - P. Kharb 2012
(ABRIDGED) We present here the results from new Very Long Baseline Array observations at 1.6 and 5 GHz of 19 galaxies of a complete sample of 21 UGC FRI radio galaxies. New Chandra data of two sources, viz., UGC00408 and UGC08433, are combined with t he Chandra archival data of 13 sources. The 5 GHz observations of ten core-jet sources are polarization-sensitive, while the 1.6 GHz observations constitute second epoch total intensity observations of nine core-only sources. Polarized emission is detected in the jets of seven sources at 5 GHz, but the cores are essentially unpolarized, except in M87. Polarization is detected at the jet edges in several sources, and the inferred magnetic field is primarily aligned with the jet direction. This could be indicative of magnetic field shearing due to jet-medium interaction, or the presence of helical magnetic fields. The jet peak intensity $I_ u$ falls with distance $d$ from the core, following the relation, $I_ upropto d^a$, where $a$ is typically -1.5. Assuming that adiabatic expansion losses are primarily responsible for the jet intensity dimming, two limiting cases are considered: [1] the jet has a constant speed on parsec-scales and is expanding gradually such that the jet radius $rpropto d^0.4$; this expansion is however unobservable in the laterally unresolved jets at 5 GHz, and [2] the jet is cylindrical and is accelerating on parsec-scales. Accelerating parsec-scale jets are consistent with the phenomenon of magnetic driving in Poynting flux dominated jets. Chandra observations of 15 UGC FRIs detect X-ray jets in nine of them. The high frequency of occurrence of X-ray jets in this complete sample suggests that they are a signature of a ubiquitous process in FRI jets.
69 - Preeti Kharb 2012
We present results from deep (70 ks) Chandra ACIS observations and Hubble Space Telescope ACS F475W observations of two highly optically polarized quasars belonging to the MOJAVE blazar sample, viz., PKS B0106+013 and 1641+399 (3C345). These observat ions reveal X-ray and optical emission from the jets in both sources. X-ray emission is detected from the entire length of the 0106+013 radio jet, which shows clear bends or wiggles - the X-ray emission is brightest at the first prominent kpc jet bend. A picture of a helical kpc jet with the first kpc-scale bend representing a jet segment moving close(r) to our line of sight, and getting Doppler boosted at both radio and X-ray frequencies, is consistent with these observations. The X-ray emission from the jet end however peaks at about 0.4 (~3.4 kpc) upstream of the radio hot spot. Optical emission is detected both at the X-ray jet termination peak and at the radio hot spot. The X-ray jet termination peak is found upstream of the radio hot spot by around 0.2 (~1.3 kpc) in the short projected jet of 3C345. HST optical emission is seen in an arc-like structure coincident with the bright radio hot spot, which we propose is a sharp (apparent) jet bend instead of a terminal point, that crosses our line of sight and consequently has a higher Doppler beaming factor. A weak radio hot spot is indeed observed less than 1 downstream of the bright radio hot spot, but has no optical or X-ray counterpart. By making use of the pc-scale radio and the kpc-scale radio/X-ray data, we derive constraints on the jet Lorentz factors (Gamma_jet) and inclination angles (theta): for a constant jet speed from pc- to kpc-scales, we obtain a Gamma_jet of ~70 for 0106+013, and ~40 for 3C345. On relaxing this assumption, we derive a Gamma_jet of ~2.5 for both the sources. Upper limits on theta of ~13 degrees are obtained for the two quasars. (ABRIDGED)
(Abridged) We present the results from new 15 ks Chandra-ACIS and 4.9 GHz Very Large Array observations of 13 galaxies hosting low luminosity AGN. This completes the multiwavelength study of a sample of 51 nearby early-type galaxies described in Cape tti & Balmaverde (2005, 2006); Balmaverde & Capetti (2006). The aim of the three previous papers was to explore the connection between the host galaxies and AGN activity in a radio-selected sample. We detect nuclear X-ray emission in eight sources and radio emission in all but one (viz., UGC6985). The new VLA observations improve the spatial resolution by a factor of ten: the presence of nuclear radio sources in 12 of the 13 galaxies confirms their AGN nature. As previously indicated, the behavior of the X-ray and radio emission in these sources depends strongly on the form of their optical surface brightness profiles derived from Hubble Space Telescope imaging, i.e., on their classification as core, power-law or intermediate galaxies. With more than twice the number of power-law and intermediate galaxies compared to previous work, we confirm with a much higher statistical significance that these galaxies lie well above the radio-X-ray correlation established in FRI radio galaxies and the low-luminosity core galaxies. This result highlights the fact that the radio-loud/radio-quiet dichotomy is a function of the host galaxys optical surface brightness profile. We present radio-optical-X-ray spectral indices for all 51 sample galaxies. Survival statistics point to significant differences in the radio-to-optical and radio-to-X-ray spectral indices between the core and power-law galaxies (Gehans Generalized Wilcoxon test probability p for the two classes being statistically similar is <10^-5), but not in the optical-to-X-ray spectral indices (p=0.25).
49 - P. Kharb , M. L. Lister , 2010
We present the results of a study on the 1.4 GHz kpc-scale radio emission in the complete flux density limited MOJAVE sample, comprising 135 radio-loud AGNs. While extended emission is detected in the majority of the sources, about 7% of the sources exhibit only radio core emission. Many BL Lacs exhibit extended radio power and kpc-scale morphology typical of powerful FRII jets, while a substantial number of quasars possess radio powers intermediate between FRIs and FRIIs. This poses challenges to the simple radio-loud unified scheme, which links BL Lacs to FRIs and quasars to FRIIs. We find a significant correlation between extended radio emission and pc-scale jet speeds: the more radio powerful sources possess faster jets. This indicates that the 1.4 GHz (or low frequency) radio emission is indeed related to jet kinetic power. Various properties such as extended radio power and apparent pc-scale jet speeds vary smoothly between different blazar subclasses, suggesting that, at least in terms of radio jet properties, the distinction between quasars and BL Lac objects, at an emission-line equivalent width of 5 Angstrom is essentially an arbitrary one. Based on the assumption that the extended radio luminosity is affected by the kpc-scale environment, we define the ratio of extended radio power to absolute optical magnitude as a proxy for environmental effects. Trends with this parameter suggest that the pc-scale jet speeds and the pc-to-kpc jet misalignments are not affected by the large-scale environment, but are more likely to depend upon factors intrinsic to the AGN, or its local pc-scale environment. We suggest that some of the extremely misaligned MOJAVE blazar jets could be hybrid morphology sources, with an FRI jet on one side and an FRII jet on the other. (Abridged)
The properties of a sample of 31 very powerful classical double radio galaxies with redshifts between zero and 1.8 are studied. The source velocities, beam powers, ambient gas densities, total lifetimes, and total outflow energies are presented and d iscussed. The rate of growth of each side of each source were obtained using a spectral aging analysis. The beam power and ambient gas density were obtained by applying the strong shock jump conditions to the ends of each side of the source. The total outflow lifetime was obtained by applying the power-law relationship between the beam power and the total source lifetime derived elsewhere for sources of this type, and the total outflow energy was obtained by combining the beam power and the total source lifetime. Composite profiles were constructed by combining results obtained from each side of each source. The composite profiles indicate that the ambient gas density falls with distance from the central engine. The source velocities, beam powers, total lifetimes, and total energies seem to be independent of radio source size. This is consistent with the standard model in which each source grows at a roughly constant rate during which time the central engine puts out a roughly constant beam power. The fact that the total source lifetimes and energies are independent of radio source size indicates that the sources are being sampled at random times during their lifetimes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا