ﻻ يوجد ملخص باللغة العربية
The properties of a sample of 31 very powerful classical double radio galaxies with redshifts between zero and 1.8 are studied. The source velocities, beam powers, ambient gas densities, total lifetimes, and total outflow energies are presented and discussed. The rate of growth of each side of each source were obtained using a spectral aging analysis. The beam power and ambient gas density were obtained by applying the strong shock jump conditions to the ends of each side of the source. The total outflow lifetime was obtained by applying the power-law relationship between the beam power and the total source lifetime derived elsewhere for sources of this type, and the total outflow energy was obtained by combining the beam power and the total source lifetime. Composite profiles were constructed by combining results obtained from each side of each source. The composite profiles indicate that the ambient gas density falls with distance from the central engine. The source velocities, beam powers, total lifetimes, and total energies seem to be independent of radio source size. This is consistent with the standard model in which each source grows at a roughly constant rate during which time the central engine puts out a roughly constant beam power. The fact that the total source lifetimes and energies are independent of radio source size indicates that the sources are being sampled at random times during their lifetimes.
Giant radio sources form the linear size extreme of the extra-galactic radio source population. Using the WENSS survey, we have selected a complete sample of these sources. We have investigated the properties of their radio structures. We find, among
We have measured mid-infrared radiation from an orientation-unbiased sample of 3CRR galaxies and quasars at redshifts 0.4 < z < 1.2 with the IRS and MIPS instruments on the Spitzer Space Telescope. Powerful emission (L_24micron > 10^22.4 W/Hz/sr) was
We use three samples (3CRR, 6CE and 6C*) to investigate the radio luminosity function (RLF) for the `most powerful low-frequency selected radio sources. We find that the data are well fitted by a model with a constant co-moving space density at high
The host galaxies of powerful radio sources are ideal laboratories to study active galactic nuclei (AGN). The galaxies themselves are among the most massive systems in the universe, and are believed to harbor supermassive black holes (SMBH). If large
We review the properties and nature of luminous high-redshift radio galaxies (HzRGs, z > 2) and the environments in which they are located. HzRGs have several distinct constituents which interact with each other - relativistic plasma, gas in various