ترغب بنشر مسار تعليمي؟ اضغط هنا

Examining the Radio-Loud/Radio-Quiet dichotomy with new Chandra and VLA observations of 13 UGC galaxies

123   0   0.0 ( 0 )
 نشر من قبل Preeti Kharb
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) We present the results from new 15 ks Chandra-ACIS and 4.9 GHz Very Large Array observations of 13 galaxies hosting low luminosity AGN. This completes the multiwavelength study of a sample of 51 nearby early-type galaxies described in Capetti & Balmaverde (2005, 2006); Balmaverde & Capetti (2006). The aim of the three previous papers was to explore the connection between the host galaxies and AGN activity in a radio-selected sample. We detect nuclear X-ray emission in eight sources and radio emission in all but one (viz., UGC6985). The new VLA observations improve the spatial resolution by a factor of ten: the presence of nuclear radio sources in 12 of the 13 galaxies confirms their AGN nature. As previously indicated, the behavior of the X-ray and radio emission in these sources depends strongly on the form of their optical surface brightness profiles derived from Hubble Space Telescope imaging, i.e., on their classification as core, power-law or intermediate galaxies. With more than twice the number of power-law and intermediate galaxies compared to previous work, we confirm with a much higher statistical significance that these galaxies lie well above the radio-X-ray correlation established in FRI radio galaxies and the low-luminosity core galaxies. This result highlights the fact that the radio-loud/radio-quiet dichotomy is a function of the host galaxys optical surface brightness profile. We present radio-optical-X-ray spectral indices for all 51 sample galaxies. Survival statistics point to significant differences in the radio-to-optical and radio-to-X-ray spectral indices between the core and power-law galaxies (Gehans Generalized Wilcoxon test probability p for the two classes being statistically similar is <10^-5), but not in the optical-to-X-ray spectral indices (p=0.25).



قيم البحث

اقرأ أيضاً

The fundamental plane for black hole activity constitutes a tight correlation between jet power, X-ray luminosity, and black hole mass. Under the assumption that a Blandford-Znajek-type mechanism, which relies on black hole spin, contributes non-negl igibly to jet production, the sufficiently small scatter in the fundamental plane shows that black hole spin differences of $mid$$Delta$a$mid sim$1 are not typical among the active galactic nuclei population. If $-$ as it seems $-$ radio loud and radio quiet objects are both faithful to the fundamental plane, models of black hole accretion in which the radio loud/radio quiet dichotomy is based on a spin dichotomy of a$sim$1/a$sim$0, respectively, are difficult to reconcile with the observations. We show how recent theoretical work based on differences in accretion flow orientation between retrograde and prograde, accommodates a small scatter in the fundamental plane for objects that do have non-negligible differences in black hole spin values. We also show that the dichotomy in spin between the most radio loud and the most radio quiet involves $mid$$Delta$a$mid approx$0. And, finally, we show how the picture that produces compatibility with the fundamental plane, also allows one to interpret other otherwise puzzling observations of jets across the mass scale including 1) the recently observed inverse relation between radio and X-rays at higher Eddington ratios in both black hole X-ray binaries as well as active galactic nuclei and 2) the apparent contradiction between jet power and black hole spin observed in X-ray hard and transitory burst states in X-ray binaries.
We investigate the clustering properties of 45441 radio-quiet quasars (RQQs) and 3493 radio-loud quasars (RLQs) drawn from a joint use of the Sloan Digital Sky Survey (SDSS) and Faint Images of the Radio Sky at 20 cm (FIRST) surveys in the range $0.3 <z<2.3$. This large spectroscopic quasar sample allow us to investigate the clustering signal dependence on radio-loudness and black hole (BH) virial mass. We find that RLQs are clustered more strongly than RQQs in all the redshift bins considered. We find a real-space correlation length of $r_{0}=6.59_{-0.24}^{+0.33},h^{-1},textrm{Mpc}$ and $r_{0}=10.95_{-1.58}^{+1.22},h^{-1},textrm{Mpc}$ { ormalsize{}for} RQQs and RLQs, respectively, for the full redshift range. This implies that RLQs are found in more massive host haloes than RQQs in our samples, with mean host halo masses of $sim4.9times10^{13},h^{-1},M_{odot}$ and $sim1.9times10^{12},h^{-1},M_{odot}$, respectively. Comparison with clustering studies of different radio source samples indicates that this mass scale of $gtrsim1times10^{13},h^{-1},M_{odot}$ is characteristic for the bright radio-population, which corresponds to the typical mass of galaxy groups and galaxy clusters. The similarity we find in correlation lengths and host halo masses for RLQs, radio galaxies and flat-spectrum radio quasars agrees with orientation-driven unification models. Additionally, the clustering signal shows a dependence on black hole (BH) mass, with the quasars powered by the most massive BHs clustering more strongly than quasars having less massive BHs. We suggest that the current virial BH mass estimates may be a valid BH proxies for studying quasar clustering. We compare our results to a previous theoretical model that assumes that quasar activity
Lobe-dominated radio-loud (LD RL) quasars occupy a restricted domain in the 4D Eigenvector 1 (4DE1) parameter space which implies restricted geometry/physics/kinematics for this subclass compared to the radio-quiet (RQ) majority of quasars. We discus s how this restricted domain for the LD RL parent population supports the notion for a RQ-RL dichotomy among Type 1 sources. 3C 57 is an atypical RL quasar that shows both uncertain radio morphology and falls in a region of 4DE1 space where RL quasars are rare. We present new radio flux and optical spectroscopic measures designed to verify its atypical optical/UV spectroscopic behaviour and clarify its radio structure. The former data confirms that 3C 57 falls off the 4DE1 quasar main sequence with both extreme optical FeII emission (R_{FeII} ~ 1) and a large CIV 1549 profile blueshift (~ -1500 km/s). These parameter values are typical of extreme Population A sources which are almost always RQ. New radio measures show no evidence for flux change over a 50+ year timescale consistent with compact steep-spectrum (CSS or young LD) over core-dominated morphology. In the 4DE1 context where LD RL are usually low L/L_{Edd} quasars we suggest that 3C 57 is an evolved RL quasar (i.e. large Black Hole mass) undergoing a major accretion event leading to a rejuvenation reflected by strong FeII emission, perhaps indicating significant heavy metal enrichment, high bolometric luminosity for a low redshift source and resultant unusually high Eddington ratio giving rise to the atypical CIV 1549.
We discuss 6 GHz JVLA observations covering a volume-limited sample of 178 low redshift ($0.2 < z < 0.3$) optically selected QSOs. Our 176 radio detections fall into two clear categories: (1) About $20$% are radio-loud QSOs (RLQs) having spectral lum inosities $L_6 gtrsim 10^{,23.2} mathrm{~W~Hz}^{-1}$ primarily generated in the active galactic nucleus (AGN) responsible for the excess optical luminosity that defines a emph{bona fide} QSO. (2) The radio-quiet QSOs (RQQs) have $10^{,21} lesssim L_6 lesssim 10^{,23.2} mathrm{~W~Hz}^{-1}$ and radio sizes $lesssim 10 mathrm{~kpc}$, and we suggest that the bulk of their radio emission is powered by star formation in their host galaxies. Radio silent QSOs ($L_6 lesssim 10^{,21} mathrm{~W~Hz}^{-1}$) are rare, so most RQQ host galaxies form stars faster than the Milky Way; they are not red and dead ellipticals. Earlier radio observations did not have the luminosity sensitivity $L_6 lesssim 10^{,21} mathrm{~W~Hz}^{-1}$ needed to distinguish between such RLQs and RQQs. Strong, generally double-sided, radio emission spanning $gg 10 mathrm{~kpc}$ was found associated with 13 of the 18 RLQ cores having peak flux densities $S_mathrm{p} > 5 mathrm{~mJy~beam}^{-1}$ ($log(L) gtrsim 24$). The radio luminosity function of optically selected QSOs and the extended radio emission associated with RLQs are both inconsistent with simple unified models that invoke relativistic beaming from randomly oriented QSOs to explain the difference between RLQs and RQQs. Some intrinsic property of the AGNs or their host galaxies must also determine whether or not a QSO appears radio loud.
We compare the optical properties of the host galaxies of radio-quiet (RQ) and radio-loud (RL) Type 2 active galactic nuclei (AGNs) to infer whether the jet production efficiency depends on the host properties or is determined just by intrinsic prope rties of the accretion flows. We carefully select galaxies from SDSS, FIRST, and NVSS catalogs. We confirm previous findings that the fraction of RL AGNs depends on the black-hole (BH) masses, and on the Eddington ratio. The comparison of the nature of the hosts of RL and RQ AGNs, therefore, requires pair-matching techniques. Matching in BH mass and Eddington ratio allows us to study the differences between galaxies hosting RL and RQ AGNs that have the same basic accretion parameters. We show that these two samples differ predominantly in the host-galaxy concentration index, morphological type (in the RL sample the frequency of elliptical galaxies becoming larger with increasing radio loudness), and nebular extinction (galaxies with highest radio loudness showing only low nebular extinction). Contrary to some previous studies, we find no significant difference between our radio-loud and radio-quiet samples regarding merger/interaction features.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا