ترغب بنشر مسار تعليمي؟ اضغط هنا

The Galactic All-Sky Survey is a survey of Galactic atomic hydrogen emission in the southern sky observed with the Parkes 64-m Radio Telescope. The first data release (GASS I) concerned survey goals and observing techniques, the second release (GASS II) focused on stray radiation and instrumental corrections. We seek to remove the remaining instrumental effects and present a third data release. We use the HEALPix tessellation concept to grid the data on the sphere. Individual telescope records are compared with averages on the nearest grid position for significant deviations. All averages are also decomposed into Gaussian components with the aim of segregating unacceptable solutions. Improved priors are used for an iterative baseline fitting and cleaning. In the last step we generate 3-D FITS data cubes and examine them for remaining problems. We have removed weak, but systematic baseline offsets with an improved baseline fitting algorithm. We have unraveled correlator failures that cause time dependent oscillations; errors cause stripes in the scanning direction. The remaining problems from radio frequency interference (RFI) are spotted. Classifying the severeness of instrumental errors for each individual telescope record (dump) allows us to exclude bad data from averages. We derive parameters that allow us to discard dumps without compromising the noise of the resulting data products too much. All steps are reiterated several times: in each case, we check the Gaussian parameters for remaining problems and inspect 3-D FITS data cubes visually. We find that in total ~1.5% of the telescope dumps need to be discarded in addition to ~0.5% of the spectral channels that were excluded in GASS II.The new data release facilitates data products with improved quality. A new web interface, compatible with the previous version, is available for download of GASS III FITS cubes and spectra.
The question, whether the stellar populations in the Milky Way take part in flaring of the scale heights as observed for the HI gas is a matter of debate. Standard mass models for the Milky Way assume a constant scale height for each of the different stellar distributions. However, there is mounting evidence that at least some of the stellar distributions reach at large galactocentric distances high altitudes that are incompatible with a constant scale height. We discuss recent observational evidence for stellar flaring and compare it with HI data from the Leiden/Argentine/Bonn (LAB) survey. Within the systemic and statistical uncertainties we find a good agreement between both.
342 - P.M.W. Kalberla , L. Dedes 2008
Aims: We derive the 3-D HI volume density distribution for the Galactic disk out to R = 60 kpc. Methods: Our analysis is based on parameters for the warp and rotation curve derived previously. The data are taken from the Leiden/Argentine/Bonn all sky 21-cm line survey. Results: The Milky Way HI disk is significantly warped but shows a coherent structure out to R = 35 kpc. The radial surface density distribution, the densities in the middle of the warped plane, and the HI scale heights all follow exponential relations. The radial scale length for the surface density distribution of the HI disk is 3.75 kpc. Gas at the outskirts for 40 < R < 60 kpc is described best by a distribution with an exponential radial scale length of 7.5 kpc and a velocity dispersion of 74 km/s. Such a highly turbulent medium fits also well with the average shape of the high velocity profile wings observed at high latitudes. The turbulent pressure gradient of such extra-planar gas is on average in balance with the gravitational forces. About 10% of the Milky Way HI gas is in this state. The large scale HI distribution is lopsided; for R < 15 kpc there is more gas in the south. The HI flaring indicates that this asymmetry is caused by a dark matter wake, located at R = 25 kpc in direction of the Magellanic System. Conclusions: The HI disk is made up of two major components. Most prominent is the normal HI disk which can be traced to R = 35 kpc. This is surrounded by a patchy distribution of highly turbulent gas reaching large scale heights but also large radial distances. At the position of the Sun the exponential scale height in the z direction is 3.9 kpc. This component resembles the anomalous gas discovered previously in some galaxies.
Context. Gas within a galaxy is forced to establish pressure balance against gravitational forces. The shape of an unperturbed gaseous disk can be used to constrain dark matter models. Aims. We derive the 3-D HI volume density distribution for the Mi lky Way out to a galactocentric radius of 40 kpc and a height of 20 kpc to constrain the Galactic mass distribution. Methods. We used the Leiden/Argentine/Bonn all sky 21-cm line survey. The transformation from brightness temperatures to densities depends on the rotation curve. We explored several models, reflecting different dark matter distributions. Each of these models was set up to solve the combined Poisson-Boltzmann equation in a self-consistent way and optimized to reproduce the observed flaring. Results. Besides a massive extended halo of M ~ 1.8 10^{12} Msun, we find a self-gravitating dark matter disk with M=2 to 3 10^{11} Msun, including a dark matter ring at 13 < R < 18.5 kpc with M = 2.2 to 2.8 10^{10} Msun. The existence of the ring was previously postulated from EGRET data and coincides with a giant stellar structure that surrounds the Galaxy. The resulting Milky Way rotation curve is flat up to R~27 kpc and slowly decreases outwards. The hi gas layer is strongly flaring. The HWHM scale height is 60 pc at R = 4 kpc and increases to ~2700$ pc at R=40 kpc. Spiral arms cause a noticeable imprint on the gravitational field, at least out to R = 30 kpc. Conclusions. Our mass model supports previous proposals that the giant stellar ring structure is due to a merging dwarf galaxy. The fact that the majority of the dark matter in the Milky Way for $R la 40$ kpc can be successfully modeled by a self-gravitating isothermal disk raises the question of whether this massive disk may have been caused by similar merger events in the past.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا