ترغب بنشر مسار تعليمي؟ اضغط هنا

GASS: The Parkes Galactic All-Sky Survey. Update: improved correction for instrumental effects and new data release

82   0   0.0 ( 0 )
 نشر من قبل Peter Kalberla MW
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Galactic All-Sky Survey is a survey of Galactic atomic hydrogen emission in the southern sky observed with the Parkes 64-m Radio Telescope. The first data release (GASS I) concerned survey goals and observing techniques, the second release (GASS II) focused on stray radiation and instrumental corrections. We seek to remove the remaining instrumental effects and present a third data release. We use the HEALPix tessellation concept to grid the data on the sphere. Individual telescope records are compared with averages on the nearest grid position for significant deviations. All averages are also decomposed into Gaussian components with the aim of segregating unacceptable solutions. Improved priors are used for an iterative baseline fitting and cleaning. In the last step we generate 3-D FITS data cubes and examine them for remaining problems. We have removed weak, but systematic baseline offsets with an improved baseline fitting algorithm. We have unraveled correlator failures that cause time dependent oscillations; errors cause stripes in the scanning direction. The remaining problems from radio frequency interference (RFI) are spotted. Classifying the severeness of instrumental errors for each individual telescope record (dump) allows us to exclude bad data from averages. We derive parameters that allow us to discard dumps without compromising the noise of the resulting data products too much. All steps are reiterated several times: in each case, we check the Gaussian parameters for remaining problems and inspect 3-D FITS data cubes visually. We find that in total ~1.5% of the telescope dumps need to be discarded in addition to ~0.5% of the spectral channels that were excluded in GASS II.The new data release facilitates data products with improved quality. A new web interface, compatible with the previous version, is available for download of GASS III FITS cubes and spectra.



قيم البحث

اقرأ أيضاً

The Parkes Galactic All-Sky Survey (GASS) is a survey of Galactic atomic hydrogen (HI) emission in the Southern sky covering declinations $delta leq 1^{circ}$ using the Parkes Radio Telescope. The survey covers $2pi$ steradians with an effective angu lar resolution of ~16, at a velocity resolution of 1.0 km/s, and with an rms brightness temperature noise of 57 mK. GASS is the most sensitive, highest angular resolution survey of Galactic HI emission ever made in the Southern sky. In this paper we outline the survey goals, describe the observations and data analysis, and present the first-stage data release. The data product is a single cube at full resolution, not corrected for stray radiation. Spectra from the survey and other data products are publicly available online.
The Parkes multibeam pulsar survey began in 1997 and is now about 50% complete. It has discovered more than 400 new pulsars so far, including a number of young, high magnetic field, and relativistic binary pulsars. Early results, descriptions of the survey and follow up timing programs can be found in papers by Lyne et al. (1999 MNRAS in press, astro-ph/9911313), Camilo et al. (astro-ph/9911185), and Manchester et al. (astro-ph/9911319). This paper describes the data release policy and how you can gain access to the raw data and details on the pulsars discovered.
Most of the sky has been imaged with NOAOs telescopes from both hemispheres. While the large majority of these data were obtained for PI-led projects and almost all of the images are publicly available, only a small fraction have been released to the community via well-calibrated and easily accessible catalogs. We are remedying this by creating a catalog of sources from most of the public data taken on the CTIO-4m+DECam and the KPNO-4m+Mosaic3. This catalog, called the NOAO Source Catalog (NSC), contains over 2.9 billion unique objects, 34 billion individual source measurements, covers ~30,000 square degrees of the sky, has depths of ~23rd magnitude in most broadband filters with ~1-2% photometric precision, and astrometric accuracy of ~7 mas. In addition, ~2 billion objects and ~21,000 square degrees of sky have photometry in three or more bands. The NSC will be useful for exploring stellar streams, dwarf satellite galaxies, QSOs, high-proper motion stars, variable stars and other transients. The NSC catalog is publicly available via the NOAO Data Lab service.
We announce the second data release (DR2) of the NOIRLab Source Catalog (NSC), using 412,116 public images from CTIO-4m+DECam, the KPNO-4m+Mosaic3 and the Bok-2.3m+90Prime. NSC DR2 contains over 3.9 billion unique objects, 68 billion individual sourc e measurements, covers $approx$35,000 square degrees of the sky, has depths of $approx$23rd magnitude in most broadband filters with $approx$1-2% photometric precision, and astrometric accuracy of $approx$7 mas. Approximately 1.9 billion objects within $approx$30,000 square degrees of sky have photometry in three or more bands. There are several improvements over NSC DR1. DR2 includes 156,662 (61%) more exposures extending over 2 more years than in DR1. The southern photometric zeropoints in $griz$ are more accurate by using the Skymapper DR1 and ATLAS-Ref2 catalogs, and improved extinction corrections were used for high-extinction regions. In addition, the astrometric accuracy is improved by taking advantage of Gaia DR2 proper motions when calibrating the WCS of individual images. This improves the NSC proper motions to $sim$2.5 mas/yr (precision) and $sim$0.2 mas/yr (accuracy). The combination of sources into unique objects is performed using a DBSCAN algorithm and mean parameters per object (such as mean magnitudes, proper motion, etc.) are calculated more robustly with outlier rejection. Finally, eight multi-band photometric variability indices are calculated for each object and variable objects are flagged (23 million objects). NSC DR2 will be useful for exploring solar system objects, stellar streams, dwarf satellite galaxies, QSOs, variable stars, high-proper motion stars, and transients. Several examples of these science use cases are presented. The NSC DR2 catalog is publicly available via the NOIRLabs Astro Data Lab science platform.
87 - Hu Zou , Xu Zhou , Xiaohui Fan 2019
The Beijing-Arizona Sky Survey (BASS) is a wide and deep imaging survey to cover a 5400 deg$^2$ area in the Northern Galactic Cap with the 2.3m Bok telescope using two filters ($g$ and $r$ bands). The Mosaic $z$-band Legacy Survey (MzLS) covers the s ame area in $z$ band with the 4m Mayall telescope. These two surveys will be used for spectroscopic targeting of the Dark Energy Spectroscopic Instrument (DESI). The BASS survey observations were completed in 2019 March. This paper describes the third data release (DR3) of BASS, which contains the photometric data from all BASS and MzLS observations between 2015 January and 2019 March. The median astrometric precision relative to {it Gaia} positions is about 17 mas and the median photometric offset relative to the PanSTARRS1 photometry is within 5 mmag. The median $5sigma$ AB magnitude depths for point sources are 24.2, 23.6, and 23.0 mag for $g$, $r$, and $z$ bands, respectively. The photometric depth within the survey area is highly homogeneous, with the difference between the 20% and 80% depth less than 0.3 mag. The DR3 data, including raw data, calibrated single-epoch images, single-epoch photometric catalogs, stacked images, and co-added photometric catalogs, are publicly accessible at url{http://batc.bao.ac.cn/BASS/doku.php?id=datarelease:home}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا