ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark matter in the Milky Way, II. the HI gas distribution as a tracer of the gravitational potential

424   0   0.0 ( 0 )
 نشر من قبل Peter Kalberla MW
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Gas within a galaxy is forced to establish pressure balance against gravitational forces. The shape of an unperturbed gaseous disk can be used to constrain dark matter models. Aims. We derive the 3-D HI volume density distribution for the Milky Way out to a galactocentric radius of 40 kpc and a height of 20 kpc to constrain the Galactic mass distribution. Methods. We used the Leiden/Argentine/Bonn all sky 21-cm line survey. The transformation from brightness temperatures to densities depends on the rotation curve. We explored several models, reflecting different dark matter distributions. Each of these models was set up to solve the combined Poisson-Boltzmann equation in a self-consistent way and optimized to reproduce the observed flaring. Results. Besides a massive extended halo of M ~ 1.8 10^{12} Msun, we find a self-gravitating dark matter disk with M=2 to 3 10^{11} Msun, including a dark matter ring at 13 < R < 18.5 kpc with M = 2.2 to 2.8 10^{10} Msun. The existence of the ring was previously postulated from EGRET data and coincides with a giant stellar structure that surrounds the Galaxy. The resulting Milky Way rotation curve is flat up to R~27 kpc and slowly decreases outwards. The hi gas layer is strongly flaring. The HWHM scale height is 60 pc at R = 4 kpc and increases to ~2700$ pc at R=40 kpc. Spiral arms cause a noticeable imprint on the gravitational field, at least out to R = 30 kpc. Conclusions. Our mass model supports previous proposals that the giant stellar ring structure is due to a merging dwarf galaxy. The fact that the majority of the dark matter in the Milky Way for $R la 40$ kpc can be successfully modeled by a self-gravitating isothermal disk raises the question of whether this massive disk may have been caused by similar merger events in the past.

قيم البحث

اقرأ أيضاً

342 - P.M.W. Kalberla , L. Dedes 2008
Aims: We derive the 3-D HI volume density distribution for the Galactic disk out to R = 60 kpc. Methods: Our analysis is based on parameters for the warp and rotation curve derived previously. The data are taken from the Leiden/Argentine/Bonn all sky 21-cm line survey. Results: The Milky Way HI disk is significantly warped but shows a coherent structure out to R = 35 kpc. The radial surface density distribution, the densities in the middle of the warped plane, and the HI scale heights all follow exponential relations. The radial scale length for the surface density distribution of the HI disk is 3.75 kpc. Gas at the outskirts for 40 < R < 60 kpc is described best by a distribution with an exponential radial scale length of 7.5 kpc and a velocity dispersion of 74 km/s. Such a highly turbulent medium fits also well with the average shape of the high velocity profile wings observed at high latitudes. The turbulent pressure gradient of such extra-planar gas is on average in balance with the gravitational forces. About 10% of the Milky Way HI gas is in this state. The large scale HI distribution is lopsided; for R < 15 kpc there is more gas in the south. The HI flaring indicates that this asymmetry is caused by a dark matter wake, located at R = 25 kpc in direction of the Magellanic System. Conclusions: The HI disk is made up of two major components. Most prominent is the normal HI disk which can be traced to R = 35 kpc. This is surrounded by a patchy distribution of highly turbulent gas reaching large scale heights but also large radial distances. At the position of the Sun the exponential scale height in the z direction is 3.9 kpc. This component resembles the anomalous gas discovered previously in some galaxies.
Using data from the Galactic All-Sky Survey, we have compared the properties and distribution of HI clouds in the disk-halo transition at the tangent points in mirror-symmetric regions of the first quadrant (QI) and fourth quadrant (QIV) of the Milky Way. Individual clouds are found to have identical properties in the two quadrants. However, there are 3 times as many clouds in QI as in QIV, their scale height is twice as large, and their radial distribution is more uniform. We attribute these major asymmetries to the formation of the clouds in the spiral arms of the Galaxy, and suggest that the clouds are related to star formation in the form of gas that has been lifted from the disk by superbubbles and stellar feedback, and fragments of shells that are falling back to the plane.
We show that subhalos falling into the Milky Way create a flow of tidally-stripped debris particles near the galactic center with characteristic velocity behavior. In the Via Lactea-II N-body simulation, this unvirialized component constitutes a few percent of the local density and has velocities peaked at 340 km/s in the solar neighborhood. Such velocity substructure has important implications for surveys of low-metallicity stars, as well as direct detection experiments sensitive to dark matter with large scattering thresholds.
We investigate data from the Galactic Effelsberg--Bonn HI Survey (EBHIS), supplemented with data from the third release of the Galactic All Sky Survey (GASS III) observed at Parkes. We explore the all sky distribution of the local Galactic HI gas wit h $|v_{rm LSR}| < 25 $ kms$^{-1}$ on angular scales of 11 to 16. Unsharp masking (USM) is applied to extract small scale features. We find cold filaments that are aligned with polarized dust emission and conclude that the cold neutral medium (CNM) is mostly organized in sheets that are, because of projection effects, observed as filaments. These filaments are associated with dust ridges, aligned with the magnetic field measured on the structures by Planck at 353 GHz. The CNM above latitudes $|b|>20^circ$ is described by a log-normal distribution, with a median Doppler temperature $T_{rm D} = 223$ K, derived from observed line widths that include turbulent contributions. The median neutral hydrogen (HI) column density is $N_{rm HI} simeq 10^{19.1},{rm cm^{-2}}$. These CNM structures are embedded within a warm neutral medium (WNM) with $N_{rm HI} simeq 10^{20} {rm cm^{-2}}$. Assuming an average distance of 100 pc, we derive for the CNM sheets a thickness of $< 0.3$ pc. Adopting a magnetic field strength of $B_{rm tot} = (6.0 pm 1.8)mu$G, proposed by Heiles & Troland 2005, and assuming that the CNM filaments are confined by magnetic pressure, we estimate a thickness of 0.09 pc. Correspondingly the median volume density is in the range $ 14 < n < 47 {rm cm^{-3}}$.
112 - Shi Shao 2020
We analyse systems analogous to the Milky Way (MW) in the EAGLE cosmological hydrodynamics simulation in order to deduce the likely structure of the MWs dark matter halo. We identify MW-mass haloes in the simulation whose satellite galaxies have simi lar kinematics and spatial distribution to those of the bright satellites of the MW, specifically systems in which the majority of the satellites (8 out of 11) have nearly co-planar orbits that are also perpendicular to the central stellar disc. We find that the normal to the common orbital plane of the co-planar satellites is well aligned with the minor axis of the host dark matter halo, with a median misalignment angle of only $17.3^circ$. Based on this result, we infer that the minor axis of the Galactic dark matter halo points towards $(l,b)=(182^circ,-2^circ)$, with an angular uncertainty at the 68 and 95 percentile confidence levels of 22$^circ$ and 43$^circ$ respectively. Thus, the inferred minor axis of the MW halo lies in the plane of the stellar disc. The halo, however, is not homologous and its flattening and orientation vary with radius. The inner parts of the halo are rounder than the outer parts and well-aligned with the stellar disc (that is the minor axis of the halo is perpendicular to the disc). Further out, the halo twists and the minor axis changes direction by $90^circ$. This twist occurs over a very narrow radial range and reflects variations in the filamentary network along which mass was accreted into the MW.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا