ترغب بنشر مسار تعليمي؟ اضغط هنا

We use transition path sampling to study evaporation in the SPC/E model of liquid water. Based on thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with p redominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface, and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.
We present a general theory for predicting the interaction potentials between DNA-coated colloids, and more broadly, any particles that interact via valence-limited ligand-receptor binding. Our theory correctly incorporates the configurational and co mbinatorial entropic factors that play a key role in valence-limited interactions. By rigorously enforcing self-consistency, it achieves near-quantitative accuracy with respect to detailed Monte Carlo calculations. With suitable approximations and in particular geometries, our theory reduces to previous successful treatments, which are now united in a common and extensible framework. We expect our tools to be useful to other researchers investigating ligand-mediated interactions. A complete and well-documented Python implementation is freely available at http://github.com/patvarilly/DNACC .
Water near hydrophobic surfaces is like that at a liquid-vapor interface, where fluctuations in water density are substantially enhanced compared to that in bulk water. Here we use molecular simulations with specialized sampling techniques to show th at water density fluctuations are similarly enhanced, even near hydrophobic surfaces of complex biomolecules, situating them at the edge of a dewetting transition. Consequently, water near these surfaces is sensitive to subtle changes in surface conformation, topology, and chemistry, any of which can tip the balance towards or away from the wet state, and thus significantly alter biomolecular interactions and function. Our work also resolves the long-standing puzzle of why some biological surfaces dewet and other seemingly similar surfaces do not.
Interfaces are a most common motif in complex systems. To understand how the presence of interfaces affect hydrophobic phenomena, we use molecular simulations and theory to study hydration of solutes at interfaces. The solutes range in size from sub- nanometer to a few nanometers. The interfaces are self-assembled monolayers with a range of chemistries, from hydrophilic to hydrophobic. We show that the driving force for assembly in the vicinity of a hydrophobic surface is weaker than that in bulk water, and decreases with increasing temperature, in contrast to that in the bulk. We explain these distinct features in terms of an interplay between interfacial fluctuations and excluded volume effects---the physics encoded in Lum-Chandler-Weeks theory [J. Phys. Chem. B 103, 4570--4577 (1999)]. Our results suggest a catalytic role for hydrophobic interfaces in the unfolding of proteins, for example, in the interior of chaperonins and in amyloid formation.
Water density fluctuations are an important statistical mechanical observable that is related to many-body correlations, as well as hydrophobic hydration and interactions. Local water density fluctuations at a solid-water surface have also been propo sed as a measure of its hydrophobicity. These fluctuations can be quantified by calculating the probability, $P_v(N)$, of observing $N$ waters in a probe volume of interest $v$. When $v$ is large, calculating $P_v(N)$ using molecular dynamics simulations is challenging, as the probability of observing very few waters is exponentially small, and the standard procedure for overcoming this problem (umbrella sampling in $N$) leads to undesirable impulsive forces. Patel et al. [J. Phys. Chem. B, 114, 1632 (2010)] have recently developed an indirect umbrella sampling (INDUS) method, that samples a coarse-grained particle number to obtain $P_v(N)$ in cuboidal volumes. Here, we present and demonstrate an extension of that approach to other basic shapes, like spheres and cylinders, as well as to collections of such volumes. We further describe the implementation of INDUS in the NPT ensemble and calculate $P_v(N)$ distributions over a broad range of pressures. Our method may be of particular interest in characterizing the hydrophobicity of interfaces of proteins, nanotubes and related systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا