ﻻ يوجد ملخص باللغة العربية
Water density fluctuations are an important statistical mechanical observable that is related to many-body correlations, as well as hydrophobic hydration and interactions. Local water density fluctuations at a solid-water surface have also been proposed as a measure of its hydrophobicity. These fluctuations can be quantified by calculating the probability, $P_v(N)$, of observing $N$ waters in a probe volume of interest $v$. When $v$ is large, calculating $P_v(N)$ using molecular dynamics simulations is challenging, as the probability of observing very few waters is exponentially small, and the standard procedure for overcoming this problem (umbrella sampling in $N$) leads to undesirable impulsive forces. Patel et al. [J. Phys. Chem. B, 114, 1632 (2010)] have recently developed an indirect umbrella sampling (INDUS) method, that samples a coarse-grained particle number to obtain $P_v(N)$ in cuboidal volumes. Here, we present and demonstrate an extension of that approach to other basic shapes, like spheres and cylinders, as well as to collections of such volumes. We further describe the implementation of INDUS in the NPT ensemble and calculate $P_v(N)$ distributions over a broad range of pressures. Our method may be of particular interest in characterizing the hydrophobicity of interfaces of proteins, nanotubes and related systems.
Hydrophobic effects drive diverse aqueous assemblies, such as micelle formation or protein folding, wherein the solvent plays an important role. Consequently, characterizing the free energetics of solvent density fluctuations can lead to important in
The Self-Healing Umbrella Sampling (SHUS) algorithm is an adaptive biasing algorithm which has been proposed to efficiently sample a multimodal probability measure. We show that this method can be seen as a variant of the well-known Wang-Landau algor
We introduce an accurate and efficient method for characterizing surface wetting and interfacial properties, such as the contact angle made by a liquid droplet on a solid surface, and the vapor-liquid surface tension of a fluid. The method makes use
Biochemical reactions are fundamentally noisy at a molecular scale. This limits the precision of reaction networks, but also allows fluctuation measurements which may reveal the structure and dynamics of the underlying biochemical network. Here, we s
Anomalous transport in a circular comb is considered. The circular motion takes place for a fixed radius, while radii are continuously distributed along the circle. Two scenarios of the anomalous transport, related to the reflecting and periodic angu