ﻻ يوجد ملخص باللغة العربية
We present a general theory for predicting the interaction potentials between DNA-coated colloids, and more broadly, any particles that interact via valence-limited ligand-receptor binding. Our theory correctly incorporates the configurational and combinatorial entropic factors that play a key role in valence-limited interactions. By rigorously enforcing self-consistency, it achieves near-quantitative accuracy with respect to detailed Monte Carlo calculations. With suitable approximations and in particular geometries, our theory reduces to previous successful treatments, which are now united in a common and extensible framework. We expect our tools to be useful to other researchers investigating ligand-mediated interactions. A complete and well-documented Python implementation is freely available at http://github.com/patvarilly/DNACC .
In recent years significant attention has been attracted to proposals which utilize DNA for nanotechnological applications. Potential applications of these ideas range from the programmable self-assembly of colloidal crystals, to biosensors and nanop
Most binary superlattices created using DNA functionalization or other approaches rely on particle size differences to achieve compositional order and structural diversity. Here we study two-dimensional (2D) assembly of DNA-functionalized micron-size
We propose a new strategy to improve the self-assembly properties of DNA-functionalised colloids. The problem that we address is that DNA-functionalised colloids typically crystallize in a narrow temperature window, if at all. The underlying reason i
The capture and translocation of biomolecules through nanometer-scale pores are processes with a potential large number of applications, and hence they have been intensively studied in the recent years. The aim of this paper is to review existing mod
The effective force between two parallel DNA molecules is calculated as a function of their mutual separation for different valencies of counter- and salt ions and different salt concentrations. Computer simulations of the primitive model are used an