ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper presents a study of the ISW effect from the Planck 2015 temperature and polarization data release. The CMB is cross-correlated with different LSS tracers: the NVSS, SDSS and WISE catalogues, and the Planck 2015 lensing map. This cross-corr elation yields a detection at $4,sigma$, where most of the signal-to-noise is due to the Planck lensing and NVSS. In fact, the ISW effect is detected only from the Planck data (through the ISW-lensing bispectrum) at $approx 3,sigma$, which is similar to the detection level achieved by combining the cross-correlation signal coming from all the catalogues. The ISW signal allow us to detect $Omega_Lambda$ at more than $3,sigma$. This cross-correlation analysis is performed only with the Planck temperature data, since the polarization scales available in the 2015 release do not permit significant improvement of the CMB-LSS cross-correlation detectability. Nevertheless, polarization data is used to study the anomalously large ISW signal previously reported through the stacking of CMB features at the locations of known superstructures. We find that the current Planck polarization data do not exclude that this signal could be caused by the ISW effect. In addition, the stacking of the Planck lensing map on the locations of superstructures exhibits a positive cross-correlation with these large-scale structures. Finally, we have improved our previous reconstruction of the ISW temperature fluctuations by combining the information encoded in all the previously mentioned LSS tracers. In particular, we construct a map of the ISW secondary anisotropies and the corresponding uncertainties map, obtained from simulations. We also explore the reconstruction of the ISW anisotropies caused by the LSS traced by the 2MPZ survey by directly inverting the density field into the gravitational potential field.
Based on CMB maps from the 2013 Planck Mission data release, this paper presents the detection of the ISW effect, i.e., the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to 4 sigma, depending on which method is used. We investigate three separate approaches, which cover essentially all previous studies, as well as breaking new ground. (i) Correlation of the CMB with the Planck reconstructed gravitational lensing potential (for the first time). This detection is made using the lensing-induced bispectrum; the correlation between lensing and the ISW effect has a significance close to 2.5 sigma. (ii) Cross-correlation with tracers of LSS, yielding around 3 sigma significance, based on a combination of radio (NVSS) and optical (SDSS) data. (iii) Aperture photometry on stacked CMB fields at the locations of known large-scale structures, which yields a 4 sigma signal when using a previously explored catalogue, but shows strong discrepancies in amplitude and scale compared to expectations. More recent catalogues give more moderate results, ranging from negligible to 2.5 sigma at most, but with a more consistent scale and amplitude, the latter being still slightly above what is expected from numerical simulations within LCMD. Where they can be compared, these measurements are compatible with previous work using data from WMAP, which had already mapped these scales to the limits of cosmic variance. Plancks broader frequency coverage confirms that the signal is achromatic, bolstering the case for ISW detection. As a final step we use tracers of large-scale structure to filter the CMB data, presenting maps of the ISW temperature perturbation. These results provide complementary and independent evidence for the existence of a dark energy component that governs the current accelerated expansion of the Universe.
112 - P. Vielva 2010
The report of a significant deviation of the CMB temperature anisotropies distribution from Gaussianity (soon after the public release of the WMAP data in 2003) has become one of the most solid WMAP anomalies. This detection grounds on an excess of t he kurtosis of the Spherical Mexican Hat Wavelet coefficients at scales of around 10 degrees. At these scales, a prominent feature --located in the southern Galactic hemisphere-- was highlighted from the rest of the SMHW coefficients: the Cold Spot. This article presents a comprehensive overview related to the study of the Cold Spot, paying attention to the non-Gaussianity detection methods, the morphological characteristics of the Cold Spot, and the possible sources studied in the literature to explain its nature. Special emphasis is made on the Cold Spot compatibility with a cosmic texture, commenting on future tests that would help to give support or discard this hypothesis.
112 - P. Vielva , J.L. Sanz 2009
We present a new method based on the N-point probability distribution (pdf) to study non-Gaussianity in cosmic microwave background (CMB) maps. Likelihood and Bayesian estimation are applied to a local non-linear perturbed model up to third order, ch aracterized by a linear term which is described by a Gaussian N-pdf, and a second and third order terms which are proportional to the square and the cube of the linear one. We also explore a set of model selection techniques (the Akaike and the Bayesian Information Criteria, the minimum description length, the Bayesian Evidence and the Generalized Likelihood Ratio Test) and their application to decide whether a given data set is better described by the proposed local non-Gaussian model, rather than by the standard Gaussian temperature distribution. As an application, we consider the analysis of the WMAP 5-year data at a resolution of around 2 degrees. At this angular scale (the Sachs-Wolfe regime), the non-Gaussian description proposed in this work defaults (under certain conditions) to an approximative local form of the weak non-linear coupling inflationary model (e.g. Komatsu & Spergel 2001) previously addressed in the literature. For this particular case, we obtain an estimation for the non-linear coupling parameter of -94 < F_nl < 154 at 95% CL. Equally, model selection criteria also indicate that the Gaussian hypothesis is favored against the particular local non-Gaussian model proposed in this work. This result is in agreement with previous findings obtained for equivalent non-Gaussian models and with different non-Gaussian estimators. However, our estimator based on the N-pdf is more efficient than previous estimators and, therefore, provides tighter constraints on the coupling parameter at degree angular resolution.
Significant alignment and signed-intensity anomalies of local features of the cosmic microwave background (CMB) are detected on the three-year WMAP data, through a decomposition of the signal with steerable wavelets on the sphere. Firstly, an alignme nt analysis identifies two mean preferred planes in the sky, both with normal axes close to the CMB dipole axis. The first plane is defined by the directions toward which local CMB features are anomalously aligned. A mean preferred axis is also identified in this plane, located very close to the ecliptic poles axis. The second plane is defined by the directions anomalously avoided by local CMB features. This alignment anomaly provides further insight on recent results (Wiaux et al. 2006). Secondly, a signed-intensity analysis identifies three mean preferred directions in the southern galactic hemisphere with anomalously high or low temperature of local CMB features: a cold spot essentially identified with a known cold spot (Vielva et al. 2004), a second cold spot lying very close to the southern end of the CMB dipole axis, and a hot spot lying close to the southern end of the ecliptic poles axis. In both analyses, the anomalies are observed at wavelet scales corresponding to angular sizes around 10 degress on the celestial sphere, with global significance levels around 1%. Further investigation reveals that the alignment and signed-intensity anomalies are only very partially related. Instrumental noise, foreground emissions, as well as some form of other systematics, are strongly rejected as possible origins of the detections. An explanation might still be envisaged in terms of a global violation of the isotropy of the Universe, inducing an intrinsic statistical anisotropy of the CMB.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا