ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of non-Gaussian CMB maps based on the N-pdf. Application to WMAP data

143   0   0.0 ( 0 )
 نشر من قبل Patricio Vielva
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new method based on the N-point probability distribution (pdf) to study non-Gaussianity in cosmic microwave background (CMB) maps. Likelihood and Bayesian estimation are applied to a local non-linear perturbed model up to third order, characterized by a linear term which is described by a Gaussian N-pdf, and a second and third order terms which are proportional to the square and the cube of the linear one. We also explore a set of model selection techniques (the Akaike and the Bayesian Information Criteria, the minimum description length, the Bayesian Evidence and the Generalized Likelihood Ratio Test) and their application to decide whether a given data set is better described by the proposed local non-Gaussian model, rather than by the standard Gaussian temperature distribution. As an application, we consider the analysis of the WMAP 5-year data at a resolution of around 2 degrees. At this angular scale (the Sachs-Wolfe regime), the non-Gaussian description proposed in this work defaults (under certain conditions) to an approximative local form of the weak non-linear coupling inflationary model (e.g. Komatsu & Spergel 2001) previously addressed in the literature. For this particular case, we obtain an estimation for the non-linear coupling parameter of -94 < F_nl < 154 at 95% CL. Equally, model selection criteria also indicate that the Gaussian hypothesis is favored against the particular local non-Gaussian model proposed in this work. This result is in agreement with previous findings obtained for equivalent non-Gaussian models and with different non-Gaussian estimators. However, our estimator based on the N-pdf is more efficient than previous estimators and, therefore, provides tighter constraints on the coupling parameter at degree angular resolution.



قيم البحث

اقرأ أيضاً

We discuss methods to compute maps of the CMB in models featuring active causal sources and in non-Gaussian models ofinflation. We show our large angle results as well as some preliminary results on small angles. We conclude by discussing on-going work.
We present a new method based on phase analysis for the Galaxy and foreground component separation from the cosmic microwave background (CMB) signal. This method is based on a prevailing assumption that the phases of the underlying CMB signal should have no or little correlation with those of the foregrounds. This method takes into consideration all the phases of each multipole mode (l <= 50, -l <= m <=l) from the whole sky without galactic cut, masks or any dissection of the whole sky into disjoint regions. We use cross correlation of the phases to illustrate that significant correlations of the foregrounds manifest themselves in the phases of the WMAP 5 frequency bands, which are used for separation of the CMB from the signals. Our final phase-cleaned CMB map has the angular power spectrum in agreement with both the WMAP result and that from Tegmark, de Oliveira-Costa and Hamilton (TOH), the phases of our derived CMB signal, however, are slightly different from those of the WMAP Internal Linear Combination map and the TOH map.
The decomposition of a signal on the sphere with the steerable wavelet constructed from the second Gaussian derivative gives access to the orientation, signed-intensity, and elongation of the signals local features. In the present work, the non-Gauss ianity of the WMAP temperature data of the cosmic microwave background (CMB) is analyzed in terms of the first four moments of the statistically isotropic random fields associated with these local morphological measures, at wavelet scales corresponding to angular sizes between 27.5 arcminutes and 30 degrees on the celestial sphere. While no detection is made neither in the orientation analysis nor in the elongation analysis, a strong detection is made in the excess kurtosis of the signed-intensity of the WMAP data. The non-Gaussianity is observed with a significance level below 0.5% at a wavelet scale corresponding to an angular size around 10 degrees, and confirmed at neighbour scales. This supports a previous detection of an excess of kurtosis in the wavelet coefficient of the WMAP data with the axisymmetric Mexican hat wavelet (Vielva et al. 2004). Instrumental noise and foreground emissions are not likely to be at the origin of the excess of kurtosis. Large-scale modulations of the CMB related to some unknown systematics are rejected as possible origins of the detection. The observed non-Gaussianity may therefore probably be imputed to the CMB itself, thereby questioning the basic inflationary scenario upon which the present concordance cosmological model relies. Taking the CMB temperature angular power spectrum of the concordance cosmological model at face value, further analysis also suggests that this non-Gaussianity is not confined to the directions on the celestial sphere with an anomalous signed-intensity.
Statistical isotropy (SI) of Cosmic Microwave Background (CMB) fluctuations is a key observational test to validate the cosmological principle underlying the standard model of cosmology. While a detection of SI violation would have immense cosmologic al ramification, it is important to recognise their possible origin in systematic effects of observations. WMAP seven year (WMAP-7) release claimed significant deviation from SI in the bipolar spherical harmonic (BipoSH) coefficients $A_{ll}^{20}$ and $A_{l-2l}^{20}$. Here we present the first explicit reproduction of the measurements reported in WMAP-7, confirming that beam systematics alone can completely account for the measured SI violation. The possibility of such a systematic origin was alluded to in WMAP-7 paper itself and other authors but not as explicitly so as to account for it accurately. We simulate CMB maps using the actual WMAP non-circular beams and scanning strategy. Our estimated BipoSH spectra from these maps match the WMAP-7 results very well. It is also evident that only a very careful and adequately detailed modelling, as carried out here, can conclusively establish that the entire signal arises from non-circular beam effect. This is important since cosmic SI violation signals are expected to be subtle and dismissing a large SI violation signal as observational artefact based on simplistic plausibility arguments run the serious risk of throwing the baby out with the bathwater.
We analyze the BOOMERanG 2003 (B03) 145 GHz temperature map to constrain the amplitude of a non Gaussian, primordial contribution to CMB fluctuations. We perform a pixel space analysis restricted to a portion of the map chosen in view of high sensiti vity, very low foreground contamination and tight control of systematic effects. We set up an estimator based on the three Minkowski functionals which relies on high quality simulated data, including non Gaussian CMB maps. We find good agreement with the Gaussian hypothesis and derive the first limits based on BOOMERanG data for the non linear coupling parameter f_NL as -300<f_NL<650 at 68% CL and -800<f_NL<1050 at 95% CL.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا