ترغب بنشر مسار تعليمي؟ اضغط هنا

Alignment and signed-intensity anomalies in WMAP data

46   0   0.0 ( 0 )
 نشر من قبل Patricio Vielva
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Significant alignment and signed-intensity anomalies of local features of the cosmic microwave background (CMB) are detected on the three-year WMAP data, through a decomposition of the signal with steerable wavelets on the sphere. Firstly, an alignment analysis identifies two mean preferred planes in the sky, both with normal axes close to the CMB dipole axis. The first plane is defined by the directions toward which local CMB features are anomalously aligned. A mean preferred axis is also identified in this plane, located very close to the ecliptic poles axis. The second plane is defined by the directions anomalously avoided by local CMB features. This alignment anomaly provides further insight on recent results (Wiaux et al. 2006). Secondly, a signed-intensity analysis identifies three mean preferred directions in the southern galactic hemisphere with anomalously high or low temperature of local CMB features: a cold spot essentially identified with a known cold spot (Vielva et al. 2004), a second cold spot lying very close to the southern end of the CMB dipole axis, and a hot spot lying close to the southern end of the ecliptic poles axis. In both analyses, the anomalies are observed at wavelet scales corresponding to angular sizes around 10 degress on the celestial sphere, with global significance levels around 1%. Further investigation reveals that the alignment and signed-intensity anomalies are only very partially related. Instrumental noise, foreground emissions, as well as some form of other systematics, are strongly rejected as possible origins of the detections. An explanation might still be envisaged in terms of a global violation of the isotropy of the Universe, inducing an intrinsic statistical anisotropy of the CMB.

قيم البحث

اقرأ أيضاً

We perform a blind multi-component analysis of the WMAP 1 year foreground cleaned maps using SMICA (Spectral Matching Independent Component Analysis). We provide a new estimate of the CMB power spectrum as well as the amplitude of the CMB anisotropie s across frequency channels. We show that the CMB anisotropies are compatible with temperature fluctuations as expected from the standard paradigm. The analysis also allows us to identify and separate a weak residual galactic emission present significantly in the Q-band outside of the Kp2 mask limits, and mainly concentrated at low galactic latitudes. We produce a map of this residual component by Wiener filtering using estimated parameters. The level of contamination of CMB data by this component is compatible with the WMAP team estimation of foreground residual contamination. In addition, the multi-component analysis allows us to estimate jointly the power spectrum of unresolved point source emission.
We stack WMAP 7-year temperature data around extragalactic point sources, showing that the profiles are consistent with WMAPs beam models, in disagreement with the findings of Sawangwit & Shanks (2010). These results require that the source samples s election is not biased by CMB fluctuations. We compare profiles from sources in the standard WMAP catalog, the WMAP catalog selected from a CMB-free combination of data, and the NVSS catalog, and quantify the agreement with fits to simple parametric beam models. We estimate the biases in source profiles due to alignments with positive CMB fluctuations, finding them roughly consistent with those biases found with the WMAP standard catalog. Addressing those biases, we find source spectral indices significantly steeper than those used by WMAP, with strong evidence for spectral steepening above 61 GHz. Such changes modify the power spectrum correction required for unresolved point sources, and tend to weaken somewhat the evidence for deviation from a Harrison-Zeldovich primordial spectrum, but more analysis is required. Finally, we discuss implications for current CMB experiments.
The identification and quantification of markers in medical images is critical for diagnosis, prognosis and management of patients in clinical practice. Supervised- or weakly supervised training enables the detection of findings that are known a prio ri. It does not scale well, and a priori definition limits the vocabulary of markers to known entities reducing the accuracy of diagnosis and prognosis. Here, we propose the identification of anomalies in large-scale medical imaging data using healthy examples as a reference. We detect and categorize candidates for anomaly findings untypical for the observed data. A deep convolutional autoencoder is trained on healthy retinal images. The learned model generates a new feature representation, and the distribution of healthy retinal patches is estimated by a one-class support vector machine. Results demonstrate that we can identify pathologic regions in images without using expert annotations. A subsequent clustering categorizes findings into clinically meaningful classes. In addition the learned features outperform standard embedding approaches in a classification task.
We studied the WMAP temperature anisotropy data using two different methods. The derived signal gradient maps show regions with low mean gradients in structures near the ecliptic poles and higher gradient values in the wide ecliptic equatorial zone, being the result of non-uniform observational time sky coverage. We show that the distinct observational time pattern present in the raw (cleaned) data leaves also its imprints on the composite CMB maps. Next, studying distribution of the signal dispersion we show that the north-south asymmetry of the WMAP signal diminishes with galactic altitude, confirming the earlier conclusions that it possibly reveals galactic foreground effects. As based on these results, one can suspect that the instrumental noise sky distribution and non-removed foregrounds can have affected some of the analyses of the CMB signal. We show that actually the different characteristic axes of the CMB sky distribution derived by numerous authors are preferentially oriented towards some distinguished regions on the sky, defined by the observational time pattern and the galactic plane orientation.
64 - D.Maino , S.Donzelli , A.J.Banday 2006
We present an application of the fast Independent Component Analysis (FastICA) to the WMAP 3yr data with the goal of extracting the CMB signal. We evaluate the confidence of our results by means of Monte Carlo simulations including CMB, foreground co ntaminations and instrumental noise specific of each WMAP frequency band. We perform a complete analysis involving all or a subset of the WMAP channels in order to select the optimal combination for CMB extraction, using the frequency scaling of the reconstructed component as a figure of merit. We found that the combination KQVW provides the best CMB frequency scaling, indicating that the low frequency foreground contamination in Q, V and W bands is better traced by the emission in the K band. The CMB angular power spectrum is recovered up to the degree scale, it is consistent within errors for all WMAP channel combination considered, and in close agreement with the WMAP 3yr results. We perform a statistical analysis of the recovered CMB pattern, and confirm the sky asymmetry reported in several previous works with independent techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا