ترغب بنشر مسار تعليمي؟ اضغط هنا

45 - F. Tolea , M. Tolea , M. Sofronie 2015
A phenomenological 2D model, simulating the martensitic transformation, is built upon existing experimental observations that the size of the formed plates -in direct transformation- decreases as the temperature is lowered; then they transform back i n reversed order. As such, if a reverse transformation is incomplete (arrested), the subsequent direct one will show anomalously large number of big size plates-old plus newly formed- but consequentially a depletion of intermediate sizes, due to geometrical constraints, phenomenon that generates thermal memory.
The phase of the electronic wave function is not directly measurable but, quite remarkably, it becomes accessible in pairs of isospectral shapes, as recently proposed in the experiment of Christopher R. Moon {it et al.}, Science {bf 319}, 782 (2008). The method is based on a special property, called transplantation, which relates the eigenfunctions of the isospectral pairs, and allows to extract the phase distributions, if the amplitude distributions are known. We numerically simulate such a phase extraction procedure in the presence of disorder, which is introduced both as Anderson disorder and as roughness at edges. With disorder, the transplantation can no longer lead to a perfect fit of the wave functions, however we show that a phase can still be extracted - defined as the phase that minimizes the misfit. Interestingly, this extracted phase coincides with (or differs negligibly from) the phase of the disorder-free system, up to a certain disorder amplitude, and a misfit of the wave functions as high as $sim 5%$, proving a robustness of the phase extraction method against disorder. However, if the disorder is increased further, the extracted phase shows a puzzle structure, no longer correlated with the phase of the disorder-free system. A discrete model is used, which is the natural approach for disorder analysis. We provide a proof that discretization preserves isospectrality and the transplantation can be adapted to the discrete systems.
We investigate theoretically the transport properties of the side-coupled double quantum dots in connection with the experimental study of Sasaki {it et al.} Phys.Rev.Lett.{bf 103}, 266806 (2009). The novelty of the set-up consists in connecting the Kondo dot directly to the leads, while the side dot provides an interference path which affects the Kondo correlations. We analyze the oscillations of the source-drain current due to the periodical Coulomb blockade of the many-level side-dot at the variation of the gate potential applied on it. The Fano profile of these oscillations may be controlled by the temperature, gate potential and interdot coupling. The non-equilibrium conductance of the double dot system exhibits zero bias anomaly which, besides the usual enhancement, may show also a suppression (a dip-like aspect) which occurs around the Fano {it zero}. In the same region, the weak temperature dependence of the conductance indicates the suppression of the Kondo effect. Scaling properties of the non-equilibrium conductance in the Fano-Kondo regime are discussed. Since the SIAM Kondo temperature is no longer the proper scaling parameter, we look for an alternative specific to the double-dot. The extended Anderson model, Keldysh formalism and equation of motion technique are used.
We address the quantum dot phase measurement problem in an open Aharonov-Bohm interferometer, assuming multiple transport channels. In such a case, the quantum dot is characterized by more than one intrinsic phase for the electrons transmission. It i s shown that the phase which would be extracted by the usual experimental method (i.e. by monitoring the shift of the Aharonov-Bohm oscillations, as in Schuster {it et al.}, Nature {bf 385}, 417 (1997)) does not coincide with any of the dot intrinsic phases, but is a combination of them. The formula of the measured phase is given. The particular case of a quantum dot containing a $S=1/2$ spin is discussed and variations of the measured phase with less than $pi$ are found, as a consequence of the multichannel transport.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا