ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase extraction in disordered isospectral shapes

73   0   0.0 ( 0 )
 نشر من قبل Mugurel Tolea C
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The phase of the electronic wave function is not directly measurable but, quite remarkably, it becomes accessible in pairs of isospectral shapes, as recently proposed in the experiment of Christopher R. Moon {it et al.}, Science {bf 319}, 782 (2008). The method is based on a special property, called transplantation, which relates the eigenfunctions of the isospectral pairs, and allows to extract the phase distributions, if the amplitude distributions are known. We numerically simulate such a phase extraction procedure in the presence of disorder, which is introduced both as Anderson disorder and as roughness at edges. With disorder, the transplantation can no longer lead to a perfect fit of the wave functions, however we show that a phase can still be extracted - defined as the phase that minimizes the misfit. Interestingly, this extracted phase coincides with (or differs negligibly from) the phase of the disorder-free system, up to a certain disorder amplitude, and a misfit of the wave functions as high as $sim 5%$, proving a robustness of the phase extraction method against disorder. However, if the disorder is increased further, the extracted phase shows a puzzle structure, no longer correlated with the phase of the disorder-free system. A discrete model is used, which is the natural approach for disorder analysis. We provide a proof that discretization preserves isospectrality and the transplantation can be adapted to the discrete systems.

قيم البحث

اقرأ أيضاً

We study the interplay between dephasing, disorder, and openness on transport efficiency in a one-dimensional chain of finite length $N$, and in particular the beneficial or detrimental effect of dephasing on transport. The excitation moves along the chain by coherent nearest-neighbor hopping $Omega$, under the action of static disorder $W$ and dephasing $gamma$. The system is open due to the coupling of the last site with an external acceptor system (sink), where the excitation can be trapped with a rate $Gamma_{rm trap}$, which determines the opening strength. While it is known that dephasing can help transport in the localized regime, here we show that dephasing can enhance energy transfer even in the ballistic regime. Specifically, in the localized regime we recover previous results, where the optimal dephasing is independent of the chain length and proportional to $W$ or $W^2/Omega$. In the ballistic regime, the optimal dephasing decreases as $1/N$ or $1/sqrt{N}$ respectively for weak and moderate static disorder. When focusing on the excitation starting at the beginning of the chain, dephasing can help excitation transfer only above a critical value of disorder $W^{rm cr}$, which strongly depends on the opening strength $Gamma_{rm trap}$. Analytic solutions are obtained for short chains.
Landauers principle states that erasure of each bit of information in a system requires at least a unit of energy $k_B T ln 2$ to be dissipated. In return, the blank bit may possibly be utilized to extract usable work of the amount $k_B T ln 2$, in k eeping with the second law of thermodynamics. While in principle any collection of spins can be utilized as information storage, work extraction by utilizing this resource in principle requires specialized engines that are capable of using this resource. In this work, we focus on heat and charge transport in a quantum spin Hall device in the presence of a spin bath. We show how a properly initialized nuclear spin subsystem can be used as a memory resource for a Maxwells Demon to harvest available heat energy from the reservoirs to induce charge current that can power an external electrical load. We also show how to initialize the nuclear spin subsystem using applied bias currents which necessarily dissipate energy, hence demonstrating Landauers principle. This provides an alternative method of energy storage in an all-electrical device. We finally propose a realistic setup to experimentally observe a Landauer erasure/work extraction cycle.
110 - Chang-An Li , Bo Fu , Zi-Ang Hu 2020
We investigate disorder-driven topological phase transitions in quantized electric quadrupole insulators. We show that chiral symmetry can protect the quantization of the quadrupole moment $q_{xy}$, such that the higher-order topological invariant is well-defined even when disorder has broken all crystalline symmetries. Moreover, nonvanishing $q_{xy}$ and consequent corner modes can be induced from a trivial insulating phase by disorder that preserves chiral symmetry. The critical points of such topological phase transitions are marked by the occurrence of extended boundary states even in the presence of strong disorder. We provide a systematic characterization of these disorder-driven topological phase transitions from both bulk and boundary descriptions.
We have observed the quantum Hall effect (QHE) and Shubnikov-de Haas (SdH) oscillations in highly disordered graphene at magnetic fields up to 65 T. Disorder was introduced by hydrogenation of graphene up to a ratio H/C $approx 0.1%$. The analysis of SdH oscillations and QHE indicates that the topological part of the Berry phase, proportional to the pseudo-spin winding number, is robust against introduction of disorder by hydrogenation in large scale graphene.
We numerically study the interaction of a terahertz pulse with monolayer graphene. We observe that the electron momentum density is affected by the carrier-envelope phase (CEP) of the single- to few-cycle terahertz laser pulse that induces the electr on dynamics. In particular, we see strong asymmetric electron momentum distributions for non-zero values of the CEP. We explain the origin of the asymmetry within the adiabatic-impulse model by finding conditions to reach minimal adiabatic gap between the valence band and the conduction band. We discuss how these conditions and the interference pattern, emanating from successive non-adiabatic transitions at this minimal gap, affect the electron momentum density and how they are modified by the CEP. This opens the door to control fundamental time-dependent electron dynamics in the tunneling regime in Dirac materials. Also, this control suggests a way to measure the CEP of a terahertz laser pulse when it interacts with condensed matter systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا