ﻻ يوجد ملخص باللغة العربية
We investigate theoretically the transport properties of the side-coupled double quantum dots in connection with the experimental study of Sasaki {it et al.} Phys.Rev.Lett.{bf 103}, 266806 (2009). The novelty of the set-up consists in connecting the Kondo dot directly to the leads, while the side dot provides an interference path which affects the Kondo correlations. We analyze the oscillations of the source-drain current due to the periodical Coulomb blockade of the many-level side-dot at the variation of the gate potential applied on it. The Fano profile of these oscillations may be controlled by the temperature, gate potential and interdot coupling. The non-equilibrium conductance of the double dot system exhibits zero bias anomaly which, besides the usual enhancement, may show also a suppression (a dip-like aspect) which occurs around the Fano {it zero}. In the same region, the weak temperature dependence of the conductance indicates the suppression of the Kondo effect. Scaling properties of the non-equilibrium conductance in the Fano-Kondo regime are discussed. Since the SIAM Kondo temperature is no longer the proper scaling parameter, we look for an alternative specific to the double-dot. The extended Anderson model, Keldysh formalism and equation of motion technique are used.
The Fano-Kondo effect in zero-bias conductance is studied based on a theoretical model for the T-shaped quantum dot by the finite temperature density matrix renormalization group method. The modification of the two Fano line shapes at much higher tem
We present transport measurements of the Kondo effect in a double quantum dot charged with only one or two electrons, respectively. For the one electron case we observe a surprising quasi-periodic oscillation of the Kondo conductance as a function of
We investigate the Fano-Kondo interplay in an Aharonov-Bohm ring with an embedded non-interacting quantum dot and a Coulomb interacting quantum dot. Using a slave-boson mean-field approximation we diagonalize the Hamiltonian via scattering matrix the
We report measurements of the Kondo effect in a double quantum dot (DQD), where the orbital states act as pseudospin states whose degeneracy contributes to Kondo screening. Standard transport spectroscopy as a function of the bias voltage on both dot
Transport measurements at cryogenic temperatures through a few electron top gated quantum dot fabricated in a silicon/silicon-germanium heterostructure are reported. Variations in gate voltage induce a transition from an isolated dot toward a dot str