ترغب بنشر مسار تعليمي؟ اضغط هنا

153 - Mohamed Kaaniche 2012
This paper summarizes the state of knowledge and ongoing research on methods and techniques for resilience evaluation, taking into account the resilience-scaling challenges and properties related to the ubiquitous computerized systems. We mainly focu s on quantitative evaluation approaches and, in particular, on model-based evaluation techniques that are commonly used to evaluate and compare, from the dependability point of view, different architecture alternatives at the design stage. We outline some of the main modeling techniques aiming at mastering the largeness of analytical dependability models at the construction level. Actually, addressing the model largeness problem is important with respect to the investigation of the scalability of current techniques to meet the complexity challenges of ubiquitous systems. Finally we present two case studies in which some of the presented techniques are applied for modeling web services and General Packet Radio Service (GPRS) mobile telephone networks, as prominent examples of large and evolving systems.
The paper refers to CRUTIAL, CRitical UTility InfrastructurAL Resilience, a European project within the research area of Critical Information Infrastructure Protection, with a specific focus on the infrastructures operated by power utilities, widely recognized as fundamental to national and international economy, security and quality of life. Such infrastructures faced with the recent market deregulations and the multiple interdependencies with other infrastructures are becoming more and more vulnerable to various threats, including accidental failures and deliberate sabotage and malicious attacks. The subject of CRUTIAL research are small scale networked ICT systems used to control and manage the electric power grid, in which artifacts controlling the physical process of electricity transportation need to be connected with corporate and societal applications performing management and maintenance functionality. The peculiarity of such ICT-supported systems is that they are related to the power system dynamics and its emergency conditions. Specific effort need to be devoted by the Electric Power community and by the Information Technology community to influence the technological progress in order to allow commercial intelligent electronic devices to be effectively deployed for the protection of citizens against cyber threats to electric power management and control systems. A well-founded know-how needs to be built inside the industrial power sector to allow all the involved stakeholders to achieve their service objectives without compromising the resilience properties of the logical and physical assets that support the electric power provision.
414 - Mohamed Kaaniche 2007
We present a hierarchical simulation approach for the dependability analysis and evaluation of a highly available commercial cache-based RAID storage system. The archi-tecture is complex and includes several layers of overlap-ping error detection and recovery mechanisms. Three ab-straction levels have been developed to model the cache architecture, cache operations, and error detection and recovery mechanism. The impact of faults and errors oc-curring in the cache and in the disks is analyzed at each level of the hierarchy. A simulation submodel is associated with each abstraction level. The models have been devel-oped using DEPEND, a simulation-based environment for system-level dependability analysis, which provides facili-ties to inject faults into a functional behavior model, to simulate error detection and recovery mechanisms, and to evaluate quantitative measures. Several fault models are defined for each submodel to simulate cache component failures, disk failures, transmission errors, and data errors in the cache memory and in the disks. Some of the parame-ters characterizing fault injection in a given submodel cor-respond to probabilities evaluated from the simulation of the lower-level submodel. Based on the proposed method-ology, we evaluate and analyze 1) the system behavior un-der a real workload and high error rate (focusing on error bursts), 2) the coverage of the error detection mechanisms implemented in the system and the error latency distribu-tions, and 3) the accumulation of errors in the cache and in the disks.
For efficiency reasons, the software system designers will is to use an integrated set of methods and tools to describe specifications and designs, and also to perform analyses such as dependability, schedulability and performance. AADL (Architecture Analysis and Design Language) has proved to be efficient for software architecture modeling. In addition, AADL was designed to accommodate several types of analyses. This paper presents an iterative dependency-driven approach for dependability modeling using AADL. It is illustrated on a small example. This approach is part of a complete framework that allows the generation of dependability analysis and evaluation models from AADL models to support the analysis of software and system architectures, in critical application domains.
154 - Mohamed Kaaniche 2007
Honeypots are more and more used to collect data on malicious activities on the Internet and to better understand the strategies and techniques used by attackers to compromise target systems. Analysis and modeling methodologies are needed to support the characterization of attack processes based on the data collected from the honeypots. This paper presents some empirical analyses based on the data collected from the Leurr{e}.com honeypot platforms deployed on the Internet and presents some preliminary modeling studies aimed at fulfilling such objectives.
This paper presents a measurement-based availability assessment study using field data collected during a 4-year period from 373 SunOS/Solaris Unix workstations and servers interconnected through a local area network. We focus on the estimation of ma chine uptimes, downtimes and availability based on the identification of failures that caused total service loss. Data corresponds to syslogd event logs that contain a large amount of information about the normal activity of the studied systems as well as their behavior in the presence of failures. It is widely recognized that the information contained in such event logs might be incomplete or imperfect. The solution investigated in this paper to address this problem is based on the use of auxiliary sources of data obtained from wtmpx files maintained by the SunOS/Solaris Unix operating system. The results obtained suggest that the combined use of wtmpx and syslogd log files provides more complete information on the state of the target systems that is useful to provide availability estimations that better reflect reality.
115 - Eric Alata 2007
This paper presents an experimental study and the lessons learned from the observation of the attackers when logged on a compromised machine. The results are based on a six months period during which a controlled experiment has been run with a high i nteraction honeypot. We correlate our findings with those obtained with a worldwide distributed system of lowinteraction honeypots.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا