ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical Utility Infrastructural Resilience

141   0   0.0 ( 0 )
 نشر من قبل Mohamed Kaaniche
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper refers to CRUTIAL, CRitical UTility InfrastructurAL Resilience, a European project within the research area of Critical Information Infrastructure Protection, with a specific focus on the infrastructures operated by power utilities, widely recognized as fundamental to national and international economy, security and quality of life. Such infrastructures faced with the recent market deregulations and the multiple interdependencies with other infrastructures are becoming more and more vulnerable to various threats, including accidental failures and deliberate sabotage and malicious attacks. The subject of CRUTIAL research are small scale networked ICT systems used to control and manage the electric power grid, in which artifacts controlling the physical process of electricity transportation need to be connected with corporate and societal applications performing management and maintenance functionality. The peculiarity of such ICT-supported systems is that they are related to the power system dynamics and its emergency conditions. Specific effort need to be devoted by the Electric Power community and by the Information Technology community to influence the technological progress in order to allow commercial intelligent electronic devices to be effectively deployed for the protection of citizens against cyber threats to electric power management and control systems. A well-founded know-how needs to be built inside the industrial power sector to allow all the involved stakeholders to achieve their service objectives without compromising the resilience properties of the logical and physical assets that support the electric power provision.

قيم البحث

اقرأ أيضاً

154 - Mohamed Kaaniche 2012
This paper summarizes the state of knowledge and ongoing research on methods and techniques for resilience evaluation, taking into account the resilience-scaling challenges and properties related to the ubiquitous computerized systems. We mainly focu s on quantitative evaluation approaches and, in particular, on model-based evaluation techniques that are commonly used to evaluate and compare, from the dependability point of view, different architecture alternatives at the design stage. We outline some of the main modeling techniques aiming at mastering the largeness of analytical dependability models at the construction level. Actually, addressing the model largeness problem is important with respect to the investigation of the scalability of current techniques to meet the complexity challenges of ubiquitous systems. Finally we present two case studies in which some of the presented techniques are applied for modeling web services and General Packet Radio Service (GPRS) mobile telephone networks, as prominent examples of large and evolving systems.
Useful models of loop kernel runtimes on out-of-order architectures require an analysis of the in-core performance behavior of instructions and their dependencies. While an instruction throughput prediction sets a lower bound to the kernel runtime, t he critical path defines an upper bound. Such predictions are an essential part of analytic (i.e., white-box) performance models like the Roofline and Execution-Cache-Memory (ECM) models. They enable a better understanding of the performance-relevant interactions between hardware architecture and loop code. The Open Source Architecture Code Analyzer (OSACA) is a static analysis tool for predicting the execution time of sequential loops. It previously supported only x86 (Intel and AMD) architectures and simple, optimistic full-throughput execution. We have heavily extended OSACA to support ARM instructions and critical path prediction including the detection of loop-carried dependencies, which turns it into a versatile cross-architecture modeling tool. We show runtime predictions for code on Intel Cascade Lake, AMD Zen, and Marvell ThunderX2 micro-architectures based on machine models from available documentation and semi-automatic benchmarking. The predictions are compared with actual measurements.
As the Arctic is heating up, so are efforts to strengthen connectivity within the region, but also to enhance the connections from remote settlements to the global networks of trade as well as sociality. With global interest in the Arctic on the rise , it becomes increasingly relevant to ensure that investments in arctic infrastructure actually serve the people of the Arctic, while promoting industrial and commercial innovation in the region through widespread access to broadband and Internet of Things (IoT) services. This calls for interdisciplinary research strategies that are able to connect and integrate technological and societal approaches, which are commonly applied separately and in isolation from one another. In this article, we propose an interdisciplinary collaborative research agenda for Arctic connectivity. Drawing on examples from Greenland, we stress the need for localized knowledge to design valuable and cost-effective connectivity solutions that cover the needs for everyday life and may also provide a new set of collaborative connectivity tools for innovation at an international level. Such solutions, termed frugal connectivity, are vital for the development of connected Arctic communities.
Many systems on our planet are known to shift abruptly and irreversibly from one state to another when they are forced across a tipping point, such as mass extinctions in ecological networks, cascading failures in infrastructure systems, and social c onvention changes in human and animal networks. Such a regime shift demonstrates a systems resilience that characterizes the ability of a system to adjust its activity to retain its basic functionality in the face of internal disturbances or external environmental changes. In the past 50 years, attention was almost exclusively given to low dimensional systems and calibration of their resilience functions and indicators of early warning signals without considerations for the interactions between the components. Only in recent years, taking advantages of the network theory and lavish real data sets, network scientists have directed their interest to the real-world complex networked multidimensional systems and their resilience function and early warning indicators. This report is devoted to a comprehensive review of resilience function and regime shift of complex systems in different domains, such as ecology, biology, social systems and infrastructure. We cover the related research about empirical observations, experimental studies, mathematical modeling, and theoretical analysis. We also discuss some ambiguous definitions, such as robustness, resilience, and stability.
140 - Sanjiva Prasad 2016
Self-similarity is the property of a system being similar to a part of itself. We posit that a special class of behaviourally self-similar systems exhibits a degree of resilience to adversarial behaviour. We formalise the notions of system, adversary and resilience in operational terms, based on transition systems and observations. While the general problem of proving systems to be behaviourally self-similar is undecidable, we show, by casting them in the framework of well-structured transition systems, that there is an interesting class of systems for which the problem is decidable. We illustrate our prescriptive framework for resilience with some small examples, e.g., systems robust to failures in a fail-stop model, and those avoiding side-channel attacks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا