ترغب بنشر مسار تعليمي؟ اضغط هنا

58 - M. Fabrizio , M. Nonino , G. Bono 2015
We have performed a new abundance analysis of Carina Red Giant (RG) stars from spectroscopic data collected with UVES (high resolution) and FLAMES/GIRAFFE (high and medium resolution) at ESO/VLT. The former sample includes 44 RGs, while the latter co nsists of 65 (high) and ~800 (medium resolution) RGs, covering a significant fraction of the galaxys RG branch (RGB), and red clump stars. To improve the abundance analysis at the faint magnitude limit, the FLAMES/GIRAFFE data were divided into ten surface gravity and effective temperature bins. The spectra of the stars belonging to the same gravity/temperature bin were stacked. This approach allowed us to increase by at least a factor of five the signal-to-noise ratio in the faint limit (V>20.5mag). We took advantage of the new photometry index cU,B,I introduced by Monelli et al. (2014), as an age and probably a metallicity indicator, to split stars along the RGB. These two stellar populations display distinct [Fe/H] and [Mg/H] distributions: their mean Fe abundances are -2.15$pm$0.06dex (sig=0.28), and -1.75$pm$0.03dex (sig=0.21), respectively. The two iron distributions differ at the 75% level. This supports preliminary results by Lemasle et al. (2012) and by Monelli et al. (2014). Moreover, we found that the old and intermediate-age stellar populations have mean [Mg/H] abundances of -1.91$pm$0.05dex (sig=0.22) and -1.35$pm$0.03dex (sig=0.22); these differ at the 83% level. Carinas {alpha}-element abundances agree, within 1sigma, with similar abundances for field Halo stars and for cluster (Galactic, Magellanic) stars. The same outcome applies to nearby dwarf spheroidals and ultra-faint dwarf galaxies, in the iron range covered by Carina stars. Finally, we found evidence of a clear correlation between Na and O abundances, thus suggesting that Carinas chemical enrichment history is quite different than in the globular clusters.
We have performed accurate iron abundance measurements for 44 red giants (RGs) in the Carina dwarf spheroidal (dSph) galaxy. We used archival, high-resolution spectra (R~38,000) collected with UVES at ESO/VLT either in slit mode (5) or in fiber mode (39, FLAMES/GIRAFFE-UVES). The sample is more than a factor of four larger than any previous spectroscopic investigation of stars in dSphs based on high-resolution (R>38,000) spectra. We did not impose the ionization equilibrium between neutral and singly-ionized iron lines. The effective temperatures and the surface gravities were estimated by fitting stellar isochrones in the V, B-V color-magnitude diagram. To measure the iron abundance of individual lines we applied the LTE spectrum synthesis fitting method using MARCS model atmospheres of appropriate metallicity. We found evidence of NLTE effects between neutral and singly-ionized iron abundances. Assuming that the FeII abundances are minimally affected by NLTE effects, we corrected the FeI stellar abundances using a linear fit between FeI and FeII stellar abundance determinations. We found that the Carina metallicity distribution based on the corrected FeI abundances (44 RGs) has a weighted mean metallicity of [Fe/H]=-1.80 and a weighted standard deviation of sigma=0.24 dex. The Carina metallicity distribution based on the FeII abundances (27 RGs) gives similar estimates ([Fe/H]=-1.72, sigma=0.24 dex). The current weighted mean metallicities are slightly more metal poor when compared with similar estimates available in the literature. Furthermore, if we restrict our analysis to stars with the most accurate iron abundances, ~20 FeI and at least three FeII measurements (15 stars), we found that the range in iron abundances covered by Carina RGs (~1 dex) agrees quite well with similar estimates based on high-resolution spectra.
We propose a novel approach to nonequilibrium real-time dynamics of quantum impurities models coupled to biased non-interacting leads, such as those relevant to quantum transport in nanoscale molecular devices. The method is based on a Diagrammatic M onte Carlo sampling of the real-time perturbation theory along the Keldysh contour. We benchmark the method on a non-interacting resonant level model and, as a first non-trivial application, we study zero temperature non-equilibrium transport through a vibrating molecule.
114 - Nicola Lanata` , Paolo Barone , 2008
We derive, by means of an extended Gutzwiller wavefunction and within the Gutzwiller approximation, the phase diagram of the Kondo lattice model. We find that generically, namely in the absence of nesting, the model displays an $f$-electron Mott loca lization accompanied by a discontinuous change of the conduction electron Fermi surface as well as by magnetism. When the non interacting Fermi surface is close to nesting, the Mott localization disentangles from the onset of magnetism. First the paramagnetic heavy fermion metal turns continuously into an itinerant magnet - the Fermi surface evolves smoothly across the transition - and afterwards Mott localization intervenes with a discontinuous rearrangement of the Fermi surface. We find that the $f$-electron localization remains even if magnetism is prevented, and is still accompanied by a sharp transfer of spectral weigth at the Fermi energy within the Brillouin zone. We further show that the Mott localization can be also induced by an external magnetic field, in which case it occurs concomitantly with a metamagnetic transition.
We solve by Dynamical Mean Field Theory a toy-model which has a phase diagram strikingly similar to that of high $T_c$ superconductors: a bell-shaped superconducting region adjacent the Mott insulator and a normal phase that evolves from a convention al Fermi liquid to a pseudogapped semi-metal as the Mott transition is approached. Guided by the physics of the impurity model that is self-consistently solved within Dynamical Mean Field Theory, we introduce an analytical ansatz to model the dynamical behavior across the various phases which fits very accurately the numerical data. The ansatz is based on the assumption that the wave-function renormalization, that is very severe especially in the pseudogap phase close to the Mott transition, is perfectly canceled by the vertex corrections in the Cooper pairing channel.A remarkable outcome is that a superconducting state can develop even from a pseudogapped normal state, in which there are no low-energy quasiparticles. The overall physical scenario that emerges, although unraveled in a specific model and in an infinite-coordination Bethe lattice, can be interpreted in terms of so general arguments to suggest that it can be realized in other correlated systems.
We introduce a novel extension of the Gutzwiller variational wavefunction able to deal with insulators that escape any mean-field like description, as for instance non-magnetic insulators. As an application, we study the Mott transition from a parama gnetic metal into a non-magnetic Peierls, or valence-bond, Mott insulator. We analyze this model by means of our Gutzwiller wavefunction analytically in the limit of large coordination lattices, where we find that: (1) the Mott transition is first order; (2) the Peierls gap is large in the Mott insulator, although it is mainly contributed by the electron repulsion; (3) singlet-superconductivity arises around the transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا