ﻻ يوجد ملخص باللغة العربية
We solve by Dynamical Mean Field Theory a toy-model which has a phase diagram strikingly similar to that of high $T_c$ superconductors: a bell-shaped superconducting region adjacent the Mott insulator and a normal phase that evolves from a conventional Fermi liquid to a pseudogapped semi-metal as the Mott transition is approached. Guided by the physics of the impurity model that is self-consistently solved within Dynamical Mean Field Theory, we introduce an analytical ansatz to model the dynamical behavior across the various phases which fits very accurately the numerical data. The ansatz is based on the assumption that the wave-function renormalization, that is very severe especially in the pseudogap phase close to the Mott transition, is perfectly canceled by the vertex corrections in the Cooper pairing channel.A remarkable outcome is that a superconducting state can develop even from a pseudogapped normal state, in which there are no low-energy quasiparticles. The overall physical scenario that emerges, although unraveled in a specific model and in an infinite-coordination Bethe lattice, can be interpreted in terms of so general arguments to suggest that it can be realized in other correlated systems.
We present a novel route for attaining unconventional superconductivity (SC) in a strongly correlated system without doping. In a simple model of a correlated band insulator (BI) at half-filling we demonstrate, based on a generalization of the projec
A microscopic theory of the electronic spectrum and of superconductivity within the t-J model on the honeycomb lattice is developed. We derive the equations for the normal and anomalous Green functions in terms of the Hubbard operators by applying th
We use a Luttinger-Ward functional approach to study the problem of phonon-mediated superconductivity in electron systems with strong electron-electron interactions (EEIs). Our derivation does not rely on an expansion in skeleton diagrams for the EEI
We report a combined theoretical and experimental investigation of the superconducting state in the quasi-two-dimensional organic superconductor $kappa$-(ET)$_2$Cu[N(CN)$_2$]Br. Applying spin-fluctuation theory to a low-energy material-specific Hamil
We review application of the SU(4) model of strongly-correlated electrons to cuprate and iron-based superconductors. A minimal self-consistent generalization of BCS theory to incorporate antiferromagnetism on an equal footing with pairing and strong