ﻻ يوجد ملخص باللغة العربية
We introduce a novel extension of the Gutzwiller variational wavefunction able to deal with insulators that escape any mean-field like description, as for instance non-magnetic insulators. As an application, we study the Mott transition from a paramagnetic metal into a non-magnetic Peierls, or valence-bond, Mott insulator. We analyze this model by means of our Gutzwiller wavefunction analytically in the limit of large coordination lattices, where we find that: (1) the Mott transition is first order; (2) the Peierls gap is large in the Mott insulator, although it is mainly contributed by the electron repulsion; (3) singlet-superconductivity arises around the transition.
We present benchmark calculations of the Anderson lattice model based on the recently-developed ghost Gutzwiller approximation. Our analysis shows that, in some parameters regimes, the predictions of the standard Gutzwiller approximation can be incor
We investigate the evolution of the Mott insulators in the triangular lattice Hubbard Model, as a function of hole doping $delta$ in both the strong and intermediate coupling limit. Using the density matrix renormalization group (DMRG) method, at lig
We report X-ray irradiation-induced carrier doping effects on the electrical conductivity in the organic dimer-Mott insulators $kappa$-(ET)$_{2}$$X$ with $X =$ Cu[N(CN)$_{2}$]Cl and Cu$_{2}$(CN)$_{3}$. For $kappa$-(ET)$_{2}$Cu[N(CN)$_{2}$]Cl, we have
Within the Landau paradigm, phases of matter are distinguished by spontaneous symmetry breaking. Implicit here is the assumption that a completely symmetric state exists: a paramagnet. At zero temperature such quantum featureless insulators may be fo
Motivated by recent experimental progress on various cluster Mott insulators, we study an extended Hubbard model on a breathing Kagom{e} lattice with a single electron orbital and $1/6$ electron filling. Two distinct types of cluster localization are