ترغب بنشر مسار تعليمي؟ اضغط هنا

The lamppost model is often used to describe the X-ray source geometry in AGN, where an infinitesimal point source is located on the black hole spin axis. This is especially invoked for Narrow Line Seyfert 1 (NLS1) galaxies, where an extremely broad iron line seen in episodes of low X-ray flux can both be explained by extremely strong relativistic effects as the source approaches the black hole horizon. The most extreme spectrum seen from the NLS1 1H0707-495 requires that the source is less than 1Rg above the event horizon in this geometry. However, the source must also be large enough to intercept sufficient seed photons from the disk to make the hard X-ray Compton continuum which produces the observed iron line/reflected spectrum. We use a fully relativistic ray tracing code to show that this implies that the source must be substantially larger than 1Rg in 1H0707-495 if the disk is the source of seed photons. Hence the source cannot fit as close as 1Rg to the horizon, so the observed spectrum and variability are not formed purely by effects of strong gravity but probably also by changes in corona and inner accretion flow geometry.
In X-ray spectra of several active galactic nuclei and Galactic black hole binaries a broad relativistically smeared iron line is observed. This feature arises by fluorescence when the accretion disc is illuminated by hot corona above it. Due to cent ral location of the corona the illumination and thus also the line emission decrease with radius. It was reported in the literature that this decrease is very steep in some of the sources, suggesting a highly compact corona. We revisit the lamp-post setup in which the corona is positioned on the axis above the rotating black hole and investigate to what extent the steep emissivity can be explained by this scenario. We show the contributions of the relativistic effects to the disc illumination by the primary source - energy shift, light bending and aberration. The lamp-post radial illumination pattern is compared to the widely used radial broken power-law emissivity profile. We find that very steep emissivities require the primary illuminating source to be positioned very near the black hole horizon and/or the spectral power-law index of the primary emission to be very high. The broken power-law approximation of the illumination can be safely used when the primary source is located at larger heights. However, for low heights the lamp-post illumination considerably differs from this approximation. We also show the variations of the iron line local flux over the disc due to the flux dependence on incident and emission angles. The former depends mainly on the height of the primary source while the latter depends on the inclination angle of the observer. Thus the strength of the line varies substantially across the disc. This effect may contribute to the observed steeper emissivity.
We discuss a model of an X-ray illuminating source above an accretion disk of a rotating black hole. Within the so called lamp-post scheme we compute the expected (observed) polarization properties of the radiation reaching an observer. We explore th e dependencies on model parameters, employing Monte Carlo radiation transfer computations of the X-ray reflection on the accretion disk and taking general relativity effects into account. In particular, we discuss the role of the black hole spin, of the observer viewing angle, and of the primary X-ray source distance from the black hole. We give several examples of the resulting polarization degree for two types of exemplary objects - active galactic nuclei and Galactic black holes. In order to assess potential observability of the polarization features, we assume the sensitivity of the proposed New Hard X-ray Mission (NHXM). We examine the energy range from several keV to ~50 keV, so the iron-line complex and the Compton hump are included in our model spectra. We find the resultant polarization degree to increase at the higher end of the studied energy band, i.e. at >~20 keV. Thus, the best results for polarimetry of reflection spectra should be achieved at the Compton hump energy region. We also obtain higher polarization degree for large spin values of the black hole, small heights of the primary source, and low inclination angles of the observer.
350 - M. Dovciak 2008
Thermal emission from the accretion disc around a black hole can be polarized, due to Thomson scattering in a disc atmosphere. In Newtonian space, the polarization angle must be either parallel or perpendicular to the projection of the disc axis on t he sky. As first pointed out by Stark and Connors in 1977, General Relativity effects strongly modify the polarization properties of the thermal radiation as observed at infinity. Among these effects, the rotation of the polarization angle with energy is particularly useful as a diagnostic tool. In this paper, we extend the Stark and Connors calculations by including the spectral hardening factor, several values of the optical depth of the scattering atmosphere and rendering the results to the expected performances of planned X-ray polarimeters. In particular, to assess the perspectives for the next generation of X-ray polarimeters, we consider the expected sensitivity of the detectors onboard the planned POLARIX and IXO missions. We assume the two cases of a Schwarzschild and an extreme Kerr black hole with a standard thin disc and a scattering atmosphere. We compute the expected polarization degree and the angle as functions of the energy as they could be measured for different inclinations of the observer, optical thickness of the atmosphere and different values of the black hole spin. We assume the thermal emission dominates the X-ray band. Using the flux level of the microquasar GRS 1915+105 in the thermal state, we calculate the observed polarization.
109 - M. Dovciak , V. Karas , G. Matt 2007
We study light curves and spectra (equivalent widths of the iron line and some other spectral characteristics) which arise by reprocessing on the surface of an accretion disc, following its illumination by a primary off-axis source - an X-ray flare, assumed to be a point-like source just above the accretion disc. We consider all general relativity effects (energy shifts, light bending, time delays, delay amplification due to the spot motion) near a rotating black hole. For some sets of parameters the reflected flux exceeds the flux from the primary component. We show that the orbit-induced variations of the equivalent width with respect to its mean value can be as high as 30% for an observers inclination of 30 degrees, and much more at higher inclinations. We calculate the ratio of the reflected flux to the primary flux and the hardness ratio which we find to vary significantly with the spot phase mainly for small orbital radii. This offers the chance to estimate the lower limit of the black hole spin if the flare arises close to the black hole. We show the results for different values of the flare orbital radius.
114 - M. Dovciak , V. Karas , G. Matt 2007
We study light curves and spectra (equivalent widths of the iron line and some other spectral characteristics) which arise by reflection on the surface of an accretion disc, following its illumination by a primary off-axis source - an X-ray flare, as sumed to be a point-like source just above the accretion disc resulting in a spot with radius dr/r<1. We consider General Relativity effects (energy shifts, light bending, time delays) near a rotating black hole, and we find them all important, including the light bending and delay amplification due to the spot motion. For some sets of parameters the reflected flux exceeds the flux from the primary component. We show that the orbit-induced variations of the equivalent width with respect to its mean value can be as high as 30% for the observers inclination of 30 degrees, and much more at higher inclinations. We calculate the ratio of the reflected flux to the primary flux and the hardness ratio which we find to vary significantly with the spot phase mainly for small orbital radii. This offers the chance to estimate the lower limit of the black hole spin if the flare arises close to the black hole.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا