ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal disc emission from a rotating black hole: X-ray polarization signatures

351   0   0.0 ( 0 )
 نشر من قبل Michal Dovciak
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Dovciak




اسأل ChatGPT حول البحث

Thermal emission from the accretion disc around a black hole can be polarized, due to Thomson scattering in a disc atmosphere. In Newtonian space, the polarization angle must be either parallel or perpendicular to the projection of the disc axis on the sky. As first pointed out by Stark and Connors in 1977, General Relativity effects strongly modify the polarization properties of the thermal radiation as observed at infinity. Among these effects, the rotation of the polarization angle with energy is particularly useful as a diagnostic tool. In this paper, we extend the Stark and Connors calculations by including the spectral hardening factor, several values of the optical depth of the scattering atmosphere and rendering the results to the expected performances of planned X-ray polarimeters. In particular, to assess the perspectives for the next generation of X-ray polarimeters, we consider the expected sensitivity of the detectors onboard the planned POLARIX and IXO missions. We assume the two cases of a Schwarzschild and an extreme Kerr black hole with a standard thin disc and a scattering atmosphere. We compute the expected polarization degree and the angle as functions of the energy as they could be measured for different inclinations of the observer, optical thickness of the atmosphere and different values of the black hole spin. We assume the thermal emission dominates the X-ray band. Using the flux level of the microquasar GRS 1915+105 in the thermal state, we calculate the observed polarization.

قيم البحث

اقرأ أيضاً

X-ray flux from the inner hot region around central compact object in a binary system illuminates the upper surface of an accretion disc and it behaves like a corona. This region can be photoionised by the illuminating radiation, thus can emit differ ent emission lines. We study those line spectra in black hole X-ray binaries for different accretion flow parameters including its geometry. The varying range of model parameters captures maximum possible observational features. We also put light on the routinely observed Fe line emission properties based on different model parameters, ionization rate, and Fe abundances. We find that the Fe line equivalent width $W_{rm E}$ decreases with increasing disc accretion rate and increases with the column density of the illuminated gas. Our estimated line properties are in agreement with observational signatures.
137 - Tomaso M. Belloni 2018
In this chapter, I present the main X-ray observational characteristics of black-hole binaries and low magnetic field neutron-star binaries, concentrating on what can be considered similarities or differences, with particular emphasis on their fast-timing behaviour.
Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the INTEGRAL/IBIS telescope. Spectral modeling of the data reveals two emission mechanisms: The 250-400 keV data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.
MWC 656 (= HD 215227) was recently discovered to be the first binary system composed of a Be star and a black hole (BH). We observed it with textit{XMM-Newton}, and detected a faint X-ray source compatible with the position of the optical star, thus proving it to be the first Be/BH X-ray binary. The spectrum analysis requires a model fit with two components, a black body plus a power law, with $k_{rm B}T = 0.07^{+0.04}_{-0.03}$~keV and a photon index $Gamma= 1.0pm0.8$, respectively. The non-thermal component dominates above $simeq$0.8 keV. The obtained total flux is $F(0.3$--$5.5~{rm keV}) = (4.6^{+1.3}_{-1.1})times10^{-14}$ erg cm$^{-2}$ s$^{-1}$. At a distance of $2.6pm0.6$~kpc the total flux translates into a luminosity $L_{rm X} = (3.7pm1.7)times10^{31}$ erg s$^{-1}$. Considering the estimated range of BH masses to be 3.8--6.9 $M_{odot}$, this luminosity represents $(6.7pm4.4)times10^{-8}~L_{rm Edd}$, which is typical of stellar-mass BHs in quiescence. We discuss the origin of the two spectral components: the thermal component is associated with the hot wind of the Be star, whereas the power law component is associated with emission from the vicinity of the BH. We also find that the position of MWC~656 in the radio versus X-ray luminosity diagram may be consistent with the radio/X-ray correlation observed in BH low-mass X-ray binaries. This suggests that this correlation might also be valid for BH high-mass X-ray binaries (HMXBs) with X-ray luminosities down to $sim10^{-8} L_{rm Edd}$. MWC~656 will allow the accretion processes and the accretion/ejection coupling at very low luminosities for BH~HMXBs to be studied.
70 - Pavel Abolmasov 2013
The influence of disc radiation capture upon black hole rotational evolution is negligible for radiatively inefficient discs. For the standard thin disc model it is a slight but potentially important effect leading to the equilibrium spin parameter v alue of about 0.998. For optically thin discs, the fraction of disc radiation captured by the black hole is however about two times larger. In some disc radiation models, inner parts of the accretion flow are optically thin, advection-dominated flows, and the thin disc ends at some transition radius R_{tr}. The thermal energy of the disc stored in trapped radiation is released at this radius. Angular distribution of the radiation released at this radial photosphere facilitates its capture by the black hole. For accretion rates close to critical and disc truncation radius of (2..4) GM/c^2, radiation capture is most efficient in spinning the black hole down that may lead to a_{eq} ~ 0.996..0.997 or less depending on the mass accretion rate. For an accretion flow radiating some constant fraction epsilon of dissipated energy, the equilibrium Kerr parameter is shown to obey the relation 1-a_{eq} propto epsilon^{3/2} as long as 1-a_{eq} << 1. Deviations from Keplerian law near the last stable orbit dominate over the radiation capture effect if they exceed 1..2%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا