ترغب بنشر مسار تعليمي؟ اضغط هنا

We report operating temperatures and heating coefficients measured in a multi-layer black phosphorus device as a function of injected electrical power. By combining micro-Raman spectroscopy and electrical transport measurements, we have observed a li near temperature increase up to 600K at a power dissipation rate of 0.896Kmu m^3/mW. By further increasing the bias voltage, we determined the threshold power and temperature for electrical breakdown and analyzed the fracture in the black phosphorus layer that caused the device failure by means of scanning electron microscopy and atomic force microscopy. The results will benefit the research and development of electronics and optoelectronics based on novel two-dimensional materials.
Black phosphorus is a layered semiconductor that is intensely researched in view of applications in optoelectronics. In this Letter, we investigate a multi-layer black phosphorus photo-detector that is capable of acquiring high-contrast (V>0.9) image s both in the visible ({lambda}_{VIS}=532nm) as well as in the infrared ({lambda}_{IR}=1550nm) spectral regime. In a first step, by using photocurrent microscopy, we map the active area of the device and we characterize responsivity and gain. In a second step, by deploying the black phosphorus device as a point-like detector in a confocal microsope setup, we acquire diffraction-limited optical images with sub-micron resolution. The results demonstrate the usefulness of black phosphorus as an optoelectronic material for hyperspectral imaging applications.
We report the radio-frequency performance of carbon nanotube array transistors that have been realized through the aligned assembly of highly separated, semiconducting carbon nanotubes on a fully scalable device platform. At a gate length of 100 nm, we observe output current saturation and obtain as-measured, extrinsic current gain and power gain cut-off frequencies, respectively, of 7 GHz and 15 GHz. While the extrinsic current gain is comparable to the state-of-the-art the extrinsic power gain is improved. The de-embedded, intrinsic current gain and power gain cut-off frequencies of 153 GHz and 30 GHz are the highest values experimentally achieved to date. We analyze the consistency of DC and AC performance parameters and discuss the requirements for future applications of carbon nanotube array transistors in high-frequency electronics.
Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers ha ve now been reported. More advanced device concepts would involve photonic elements such as cavities to control light-matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا