ﻻ يوجد ملخص باللغة العربية
We report operating temperatures and heating coefficients measured in a multi-layer black phosphorus device as a function of injected electrical power. By combining micro-Raman spectroscopy and electrical transport measurements, we have observed a linear temperature increase up to 600K at a power dissipation rate of 0.896Kmu m^3/mW. By further increasing the bias voltage, we determined the threshold power and temperature for electrical breakdown and analyzed the fracture in the black phosphorus layer that caused the device failure by means of scanning electron microscopy and atomic force microscopy. The results will benefit the research and development of electronics and optoelectronics based on novel two-dimensional materials.
Exfoliated black phosphorus has recently emerged as a new two-dimensional crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have potentially important applications in electronics, optoelectronics and ph
Phosphorus atomic chains, the utmost-narrow nanostructures of black phosphorus (BP), are highly relevant to the in-depth development of BP into one-dimensional (1D) regime. In this contribution, we report a top-down route to prepare atomic chains of
Black phosphorus presents a very anisotropic crystal structure, making it a potential candidate for hyperbolic plasmonics, characterized by a permittivity tensor where one of the principal components is metallic and the other dielectric. Here we demo
In a semimetal, both electron and hole carriers contribute to the density of states at the Fermi level. The small band overlaps and multi-band effects give rise to many novel electronic properties, such as relativistic Dirac fermions with linear disp
Recently rediscovered black phosphorus is a layered semiconductor with promising electronic and photonic properties. Dynamic control of its bandgap can enable novel device applications and allow for the exploration of new physical phenomena. However,