ترغب بنشر مسار تعليمي؟ اضغط هنا

The configuration interaction (CI) method for calculating the exact eigenstates of a quantum-mechanical few-body system is problematic when applied to particles interacting through contact forces. In dimensions higher than one the approach fails due to the pathology of the Dirac delta-potential, making it impossible to reach convergence by gradually increasing the size of the Hilbert space. However, this problem may be cured in a rather simple manner by renormalizing the strength of the contact potential when diagonalizing in a truncated Hilbert space. One hereby relies on the comparison of the CI results to the two-body ground-state energy obtained by the exact solution of the Schroedinger equation for a regularized contact interaction. We here discuss a scheme that provides cutoff-independent few-body physical observables. The method is applied to a few-body system of ultracold atoms confined by a two-dimensional harmonic oscillator.
We develop a theory of inter-valley Coulomb scattering in semiconducting carbon-nanotube quantum dots, taking into account the effects of curvature and chirality. Starting from the effective-mass description of single-particle states, we study the tw o-electron system by fully including Coulomb interaction, spin-orbit coupling, and short-range disorder. We find that the energy level splittings associated with inter-valley scattering are nearly independent of the chiral angle and, while smaller than those due to spin-orbit interaction, large enough to be measurable.
We observe the low-lying excitations of a molecular dimer formed by two electrons in a GaAs semiconductor quantum dot in which the number of confined electrons is tuned by optical illumination. By employing inelastic light scattering we identify the inter-shell excitations in the one-electron regime and the distinct spin and charge modes in the interacting few-body configuration. In the case of two electrons a comparison with configuration-interaction calculations allows us to link the observed excitations with the breathing mode of the molecular dimer and to determine the singlet-triplet energy splitting.
Correlation among particles in finite quantum systems leads to complex behaviour and novel states of matter. One remarkable example is predicted to occur in a semiconductor quantum dot (QD) where at vanishing density the Coulomb correlation among ele ctrons rigidly fixes their relative position as that of the nuclei in a molecule. In this limit, the neutral few-body excitations are roto-vibrations, which have either rigid-rotor or relative-motion character. In the weak-correlation regime, on the contrary, the Coriolis force mixes rotational and vibrational motions. Here we report evidence of roto-vibrational modes of an electron molecular state at densities for which electron localization is not yet fully achieved. We probe these collective modes by inelastic light scattering in QDs containing four electrons. Spectra of low-lying excitations associated to changes of the relative-motion wave function -the analogues of the vibration modes of a conventional molecule- do not depend on the rotational state represented by the total angular momentum. Theoretical simulations via the configuration-interaction (CI) method are in agreement with the observed roto-vibrational modes and indicate that such molecular excitations develop at the onset of short-range correlation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا