ترغب بنشر مسار تعليمي؟ اضغط هنا

268 - Markus H. Thoma 2009
Ultrarelativistic electron-positron plasmas can be produced in high-intensity laser fields and play a role in various astrophysical situations. Their properties can be calculated using QED at finite temperature. Here we will use perturbative QED at f inite temperature for calculating various important properties, such as the equation of state, dispersion relations of collective plasma modes of photons and electrons, Debye screening, damping rates, mean free paths, collision times, transport coefficients, and particle production rates, of ultrarelativistic electron-positron plasmas. In particular, we will focus on electron-positron plasmas produced with ultra-strong lasers.
135 - Markus H. Thoma 2008
Ultrarelativistic electron-positron plasmas can be produced in high-intensity laser fields and play a role in various astrophysical situations. Their properties can be calculated using QED at finite temperature. Here we will use perturbative QED at f inite temperature for calculating various important properties, such as the equation of state, dispersion relations of collective plasma modes of photons and electrons, Debye screening, damping rates, mean free paths, collision times, transport coefficients, and particle production rates, of ultrarelativistic electron-positron plasmas. In particular, we will focus on electron-positron plasmas produced with ultra-strong lasers.
181 - Markus H. Thoma 2008
Ultra-relativistic electromagnetic plasmas can be used for improving our understanding of the quark-gluon plasma. In the weakly coupled regime both plasmas can be described by transport theoretical and quantum field theoretical methods leading to sim ilar results for the plasma properties (dielectric tensor, dispersion relations, plasma frequency, Debye screening, transport coefficients, damping and particle production rates). In particular, future experiments with ultra-relativistic electron-positron plasmas in ultra-strong laser fields might open the possibility to test these predictions, e.g. the existence of a new fermionic plasma wave (plasmino). In the strongly coupled regime electromagnetic plasmas such as complex plasmas can be used as models or at least analogies for the quark-gluon plasma possibly produced in relativistic heavy-ion experiments. For example, pair correlation functions can be used to investigate the equation of state and cross section enhancement for parton scattering can be explained.
The plasma is generated in a low frequency glow discharge within an elongated glass tube oriented vertically. The dust particles added to the plasma are confined above the heater and form counter-rotating clouds close to the tube centre. The shape of the clouds and the velocity field of the conveying dust particles are determined. The forces acting on the particles are calculated. It is shown that convection of the dust is affected by the convective gas motion which is triggered, in turn, by thermal creep of the gas along the inhomogeneously heated walls of the tube.
String theoretical arguments led to the hypothesis that the ratio of viscosity to entropy of any physical system has a lower bound. Strongly coupled systems usually have a small viscosity compared to weakly coupled plasmas in which the viscosity is p roportional to the mean free path. In the case of a one-component plasma the viscosity as a function of the coupling strength shows a minimum. Here we show that the ratio of viscosity to entropy of a strongly coupled one-component plasma is always above the lower bound predicted by string theory.
Wakes created by a parton moving through a static and infinitely extended quark-gluon plasma are considered. In contrast to former investigations collisions within the quark-gluon plasma are taken into account using a transport theoretical approach ( Boltzmann equation) with a Bhatnagar-Gross-Krook collision term. Within this model it is shown that the wake structure changes significantly compared to the collisionless case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا